
Type-Preserving Compilation of Featherweight Java

CHRISTOPHER LEAGUE, ZHONG SHAO, and VALERY TRIFONOV

Yale University

We present an efficient encoding of core Java constructs in a simple, implementable typed in-

termediate language. The encoding, after type erasure, has the same operational behavior as a
standard implementation using vtables and self-application for method invocation. Classes inherit

super-class methods with no overhead. We support mutually recursive classes while preserving

separate compilation. Our strategy extends naturally to a significant subset of Java, including
interfaces and privacy. The formal translation using Featherweight Java allows comprehensi-

ble type-preservation proofs and serves as a starting point for extending the translation to new
features. Our work provides a foundation for supporting certifying compilation of Java-like class-

based languages in a type-theoretic framework.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers;

F.3.3 [Logic and Meanings of Programs]: Studies of Program Constructs—Object-Oriented
Constructs

General Terms: Languages, Verification

Additional Key Words and Phrases: Java, object encodings, type systems, typed intermediate
languages

1. INTRODUCTION

Many compilation techniques for functional languages focus on type-directed com-
pilation [Peyton Jones et al. 1992; Shao and Appel 1995; Morrisett et al. 1996].
Source-level types are transformed along with the program and then used to guide
and justify advanced optimizations. More generally, types preserved throughout
compilation can be used to reason about the safety and security of object code [Nec-
ula and Lee 1996; Necula 1997; Morrisett et al. 1999].

Type-preserving compilers typically use variants of the polymorphic typed λ-
calculus Fω [Girard 1972; Reynolds 1974] as their intermediate representations.
Much is known about optimizing Fω programs [Tarditi et al. 1996], about compiling
them to machine code [Morrisett et al. 1999], and about implementing the Fω type
system efficiently in a production compiler [Shao et al. 1998].

Recently, several researchers have attempted to apply these techniques to object-
oriented languages [Wright et al. 1998; Crary 1999; League et al. 1999; Vanderwaart
1999; Glew 2000a; League et al. 2001b]. While there is significant precedent for

This work was sponsored in part by DARPA OASIS grant F30602-99-1-0519, NSF grant CCR-

9901011, and NSF ITR grant CCR-0081590. Any opinions, findings, and conclusions contained
in this document are those of the authors and do not reflect the views of these agencies. Authors’

addresses: Department of Computer Science, Yale University, P.O. Box 208285, New Haven, CT
06511 USA; email: {league, shao, trifonov}@cs.yale.edu.

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–39.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Type-Preserving Compilation of Featherweight Java

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Dr,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

39

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 · Christopher League et al.

encoding object-oriented languages in typed λ-calculi [Canning et al. 1989; Bruce
1994; Eifrig et al. 1995; Abadi et al. 1996; Bruce et al. 1999], type-preserving
compilation alters the requirements in some fundamental ways. The intermediate
language must provide simple, orthogonal primitives that are amenable to opti-
mization. If method invocation is an atomic primitive, for example, then we cannot
safely optimize a sequence of calls on the same object. Furthermore, we must avoid
introducing any dynamic overhead solely to achieve static typing. One can often,
for example, simplify a type system by adding coercion functions or extra indirec-
tions, but these techniques have associated run-time penalties. The machinery used
to achieve static typing should be erasable, meaning that it can be discarded after
verification without affecting execution.

Given these constraints, the type system for the intermediate language should be
as simple as possible. Type checking must be not only decidable, but efficient in
practice. Typed compilation generally places greater demands on the implementa-
tion of a type system than does a simple type checker for a source language. On
the other hand, at the level of the intermediate language, we can add more detailed
and explicit type annotations than a source-level programmer might accept. With
respect to object encodings, for example, subsumption is not necessarily required;
it can be replaced with explicit coercions as long as their run-time cost is nil.

Finally, a type-preserving compiler should, where possible, maintain source-level
abstractions. Source language type systems enforce certain abstractions (such as
private fields and restricted interfaces) which could be eliminated in a translation
without compromising type safety. This is dangerous if the translated code will be
linked with other code, perhaps translated from a different source language. Link-
time type checking will not prevent, for example, one module from accessing the
private fields of another—unless the abstractions are preserved in the object code.

We have developed techniques for compiling a significant subset of Java into a sim-
ple and efficient typed intermediate language [League et al. 1999; 2001b]. Method
invocation, after type erasure, has the same operational behavior as a standard im-
plementation of self application using vtables (per-class tables of functions). Classes
inherit or override methods from super classes with no overhead. By pairing an ob-
ject with a particular view whenever it is cast to an interface type, interface calls
are no more expensive than ordinary method calls. We support mutually recursive
classes (at the type and term level) while still maintaining separate compilation.
Dynamic casts and instance-of queries are implemented as polymorphic methods
using tags generated at link-time. Private fields can be hidden from outsiders using
existential types.

Ours is the first efficient encoding of a class-based language into Fω without
subtyping or bounded quantification. Glew [2000a] compiles a simple class-based
calculus using F-bounded quantification. It is not known whether this feature is
practical in a production compiler, since the type checker must infer derivations
of the subtyping judgments. Fisher and Mitchell [1998] use extensible objects to
model class constructs. For efficient implementation, though, these objects must be
expressed using simpler primitives. Our intermediate representation uses simple,
well-understood extensions: row polymorphism, existential, and recursive types. It
is already implemented as part of the Standard ML of New Jersey compiler [Shao
and Appel 1995; Shao 1997], and the new Java front end is in active develop-
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 3

CL ::= class C / C {(C f;)∗ K M∗}

K ::= C((C f)∗) {super(f∗); (this.f = f;)∗}

M ::= C m((C x)∗) { ↑ e;}

e ::= x | e.f | e.m(e∗) | new C(e∗) | (C)e

Fig. 1. Syntax of Featherweight Java: classes, constructors, methods, and expressions.

class Point {

int x;

Point (int x) { this.x = x; }

int getx () { ↑ this.x }

Point move (int dx) { ↑ new Point (this.x + dx); }

Point bump () { ↑ this.move (1); }

}

class ScaledPoint / Point {

int s;

ScaledPoint (int x, int s) { super(x); this.s = s; }

int gets () { ↑ this.s }

Point move (int dx) { ↑ new ScaledPoint (this.x + this.s * dx, this.s); }

ScaledPoint zoom (int s) { ↑ new ScaledPoint (this.x, this.s * s); }

}

Fig. 2. Two classes in Featherweight Java, extended with integers and arithmetic.

ment [League et al. 2001a].
This paper focuses on a formal translation of programs in Featherweight Java

(FJ) [Igarashi et al. 1999], a source calculus which models some of the salient
features of Java (including classes, fields, methods, and dynamic cast). FJ is small
enough to allow detailed proofs of interesting formal properties of the translation,
such as type preservation. It also serves as an effective starting point for designing
encodings of interesting extensions, such as genericity [Bracha et al. 1998], inner
classes [Igarashi and Pierce 2001], and reflection.

We describe the syntax and semantics of the source and target languages in
the next two sections. In section 4, we explain and formalize each aspect of our
translation, ultimately proving that it is type-preserving. Section 5 discusses our
strategies for implementing certain Java constructs which are not featured in FJ
(such as interfaces and privacy). Finally, we contextualize our contribution with a
survey of related work in section 6.

2. SOURCE LANGUAGE

The source language for our translation is Featherweight Java (FJ), a “minimal core
calculus for modeling Java’s type system” [Igarashi et al. 1999]. FJ is small enough
that perspicuous formal translation and detailed proofs are possible. Figure 1
contains the syntax of FJ; figure 2 illustrates some of the features of FJ with two
sample classes.

Class declarations (CL) contain the names of the new class and its super class,
a sequence of field declarations, a constructor (K), and a sequence of method dec-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · Christopher League et al.

Kinds κ ::= Type | RL | κ⇒κ′ | {(l::κ)∗}

Types τ ::= α | λα::κ. τ | τ τ ′ | {(l= τ)∗} | τ ·l | τ→τ ′ | AbsL | l : τ ; τ ′ | {τ} | [[τ]]
| µα::κ. τ | ∀α::κ. τ | ∃α::κ. τ

Selectors s ::= ◦ | s·l

Terms e ::= x | λx : τ. e | e e′ | Λα::κ. e | e [τ] | injτl e | case e of (l x⇒ e)∗ else e
| {(l= e)∗} | e.l | fix [τ] e | 〈α::κ= τ , e : τ ′〉 | open e as 〈α::κ, x : τ〉 in e′

| fold e as µα::κ. τ at λγ::κ. s[γ] | unfold e as µα::κ. τ at λγ::κ. s[γ]

| abort [τ]

Fig. 3. Syntax of the target language.

l1 : τ1, . . . , ln : τn ≡ l1 : τ1 ; . . . ln : τn ; Abs{l1...ln}

1 ≡ {Abs∅}
maybe ≡ λα::Type. [[some :α, none : 1]]

some ≡ Λα::Type.λx :α. injmaybe α
some x

none ≡ Λα::Type. injmaybe α
none {}

let x : τ = e in e′ ≡ (λx : τ. e′) e

Fig. 4. Derived syntactic forms of the target language.

larations (M). We use letters A through E to range over class names, f and g to
range over field names, m over method names, and x over other variables. There
are five forms of expressions: variables, field selection, method invocation, object
creation, and cast. A program (CT, e) consists of a fixed class table, CT , mapping
class names to declarations, and a main program expression e.

There are no assignments, interfaces, super calls, exceptions, or access control
in FJ. Constructors always take all the fields as arguments, in the same order that
they are declared in the class hierarchy. FJ permits recursive class dependencies
with the full generality of Java. A class can refer to the name and constructor of
any other class, including its sub-classes. While this does not complicate the FJ
semantics, it is one of the major challenges of our translation.

For reference, we reprint the semantics of FJ in appendix A. They begin by
defining three relations. The subtype relation <: is the reflexive, transitive closure
of the relation defined by the super class declarations (class C / B). The relation
fields(C) returns the sequence of all the fields found in objects of class C. The
relation mtype(m, C) finds the type signature for method m in class C by searching
up the hierarchy. Type signatures have the form D1 . . . Dn->D0.

The expression typing rules govern judgments of the form Γ ` e ∈ C, meaning
that FJ expression e is of type C in context Γ. The operational semantics are given
by three primitive reduction rules and the expected congruence rules. Since there
are no side effects, evaluation order is unspecified. The FJ type system is sound
and decidable. Please see the appendix for the rules, or [Igarashi et al. 1999] for
further explanation.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 5

Pack and open for existential types:

Φ, α ::κ ` τ :: Type Φ ` τ ′ :: κ
Φ; ∆ ` e : τ [α := τ ′]

Φ; ∆ ` 〈α::κ= τ ′, e : τ〉 :∃α::κ. τ
(1)

Φ; ∆ ` e :∃α::κ. τ Φ ` τ ′ :: Type
Φ, α ::κ; ∆, x : τ ` e′ : τ ′

Φ; ∆ ` open e as 〈α::κ, x : τ〉 in e′ : τ ′
(2)

Recursive record term:

Φ; ∆ ` e :{τ}→{τ}
Φ; ∆ ` fix [τ] e :{τ}

(3)

Row and record types:

`Φ kind env

Φ ` AbsL :: RL
(4)

Φ ` τ :: Type Φ ` τ ′ :: RL∪{l}

Φ ` l : τ ; τ ′ :: RL−{l}
(5)

Φ ` τ :: R∅

Φ ` {τ} :: Type
(6)

Sum type, its introduction and elimination:

Φ ` τ :: R∅

Φ ` [[τ]] :: Type
(7)

Φ ` [[l1 : τ1 ; . . . ln : τn ; τ]] :: Type Φ; ∆ ` e : τi

Φ; ∆ ` inj
[[l1 : τ1 ; ...ln : τn ; τ]]
li

e : [[l1 : τ1 ; . . . ln : τn ; τ]]
(8)

l′j = l′
j′ ⇒ j = j′ (∀j, j′ ∈ {1 . . .m})

Φ; ∆ ` e : [[l1 : τ1 ; . . . ln : τn ; τ]] Φ; ∆ ` e′ : τ ′
∃i ∈ {1 . . . n} : li = l′j and Φ; ∆, xj : τi ` ej : τ ′ (∀j ∈ {1 . . .m})

Φ; ∆ ` case e of (l′j xj ⇒ ej)
j∈{1...m} else e′ : τ ′

(9)

Fold and unfold for recursive types:

Φ, α ::κ ` τ :: κ Φ ` τs :: κ⇒Type Φ; ∆ ` e : τs (τ [α := µα::κ. τ])

Φ; ∆ ` fold e as µα::κ. τ at τs : τs (µα::κ. τ)
(10)

Φ, α ::κ ` τ :: κ Φ ` τs :: κ⇒Type Φ; ∆ ` e : τs (µα::κ. τ)

Φ; ∆ ` unfold e as µα::κ. τ at τs : τs (τ [α := µα::κ. τ])
(11)

Fig. 5. Selected typing rules for the target language. The judgments represented are type forma-

tion Φ ` τ :: κ and term formation Φ; ∆ ` e : τ , where Φ maps type variables to their kinds and
∆ maps term variables to their types.

3. TARGET LANGUAGE

The target language of our translation is the higher-order polymorphic λ-calculus
Fω [Girard 1972; Reynolds 1974] extended with existential types [Mitchell and
Plotkin 1988], row polymorphism [Rémy 1993], ordered records, sum types, re-
cursive types, and a term-level fixpoint for constructing recursive records. The
syntax appears in figures 3 and 4. Typing rules for the non-standard features are
given in figure 5; the remaining rules are in appendix B.
Fω is an explicitly-typed calculus, with type annotations on function arguments

and type applications for instantiating polymorphic functions. Type is the base
kind of types which classify terms. The arrow kind κ⇒κ′ classifies type functions.
A polymorphic array constructor, for example, would have kind Type⇒Type. The
form λα::κ. τ introduces the arrow kind, and τ τ ′ eliminates it. That is, (λα::κ. τ) τ ′

is well-formed if τ ′ has kind κ. It is equivalent to τ [α := τ ′], which denotes the
capture-avoiding substitution of τ ′ for α in τ . Labeled tuples of types are enclosed in

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · Christopher League et al.

braces {l= τ . . .} and have tuple kinds {τ ::κ . . .}. The mid-dot syntax τ ·l denotes
selection of a type from a tuple.

The single arrow τ→τ ′ is the type of a function expecting an argument of type
τ and returning a result of type τ ′. Our implementation supports multi-argument
functions, but in this presentation, for simplicity, we simulate them using curried
arguments (int→int→int). Anonymous functions are written using the boldface
lambda, as in λx : τ . e. Juxtaposition of terms (e e′) indicates applying function
e to argument e′. Polymorphic functions are introduced by the capital lambda
(Λα::κ. e) which binds α in e. This term has type ∀α::κ. τ , where e has type τ
and α may appear in τ . Thus, the polymorphic identity function is written as
id = Λα::Type. λx::α. x and has type ∀α::Type. α→α. An application of id to the
integer 3 is written id [int] 3.

The term abort [τ] represents a runtime error that otherwise would have produced
a value of type τ . We use this to model a failed dynamic cast. In the operational
semantics, evaluating abort [τ] produces an infinite loop. In a real system, abort
would correspond to throwing an exception.

Following Rémy [1993] we introduce a kind of rows RL, where L is the set of labels
banned from the row. AbsL is an empty row of kind RL, and l : τ ; τ ′ prepends a
field with label l and type τ onto the row τ ′. The row formation rules (4) and (5)
prohibit duplicate labels: a type variable α of kind R{m} cannot be instantiated
with a row in which the label m is already bound. Boldface braces {·} denote the
type constructor for records; it lifts a complete row type (of kind R∅) to kind Type.
Record terms are written as a sequence of bindings in braces: {l1 = e, l2 = e,}.
Permutations of rows are not considered equivalent—the labels are used only for
readability. This means that record selection e.l can be compiled using offsets
which are known at compile-time. We sometimes use commas and omit AbsL when
specifying complete rows (see the derived forms in figure 4). We let 1 (read ‘unit’)
denote the empty record type. Row kinds can be used to encode functions which
are polymorphic over the tail of a record argument. For example, the function
Λρ::R{l}.λx :{l : string ; ρ}. print x.l can be instantiated and applied to any record
which contains a string l as its first field.

Existential types (∃α::κ. τ) support abstraction by hiding a witness type. They
are introduced at the term level by a package 〈α::κ= τ , e : τ ′〉, where τ is the
witness type (of kind κ) and e has type τ ′[α := τ]. The existential is eliminated
(within a restricted scope) by open; see rules (1) and (2).

Labeled sum types are constructed by enclosing a complete row within boldface
brackets: [[·]]. Sum types are introduced by a term-level injection and eliminated by
an ML-like case statement; see rules (8) and (9). Figure 4 defines a parameterized
type maybe with constructors some and none.

Recursive types are mediated by explicit fold and unfold terms. These so-called
iso-recursive types (a term first used by Crary et al. [1999]) simplify type checking,
but are less flexible than equi-recursive types unless the calculus is equipped with
a definedness logic for coercions [Abadi and Fiore 1996]. Since we use recursive
types at higher kinds, the syntax for folding and unfolding them deserves some
explanation. Suppose we wish to encode the following mutually recursive type
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 7

abbreviations:

type even = maybe {hd : int, tl : odd}
type odd = {hd : int, tl : even}

The solution is expressed as the fixpoint over a tuple:

t = µα::{even :: Type, odd :: Type}.
{even = maybe {hd : int, tl :α·odd},

odd ={hd : int, tl :α·even}}

Now, the two recursive types are expressed as t·even and t·odd. There are, however,
no type equivalence rules for reducing t·even; a term having this type must first be
coerced to a type in which t is unfolded. We allow unfolding of recursive types within
a tuple by specifying a selector after the at keyword. Selectors are syntactically
restricted to a (possibly empty) sequence of labeled selections from a tuple. The
syntax λγ::κ. s[γ] allows identity (λγ::κ. γ), one selection (λγ::κ. γ·l1), two selections
(λγ::κ. γ·l1·l2), and so on. The formation rules (10) and (11) further restrict the
selectors to have a result of kind Type. Thus, if e has type t·odd, then the expression

unfold e as t at λγ::{even :: Type, odd :: Type}. γ·odd

has type {hd : int, tl : t·even}. For recursive types of kind Type, the only allowed
selector is identity, so we omit it. We sometimes also omit the as annotation where
it can be readily inferred.

The typing judgments are decidable, and the type system is sound with respect to
a structured operational semantics. We sketch the decidability proof in section B.2,
and give a detailed soundness proof in section B.4. The target language also enjoys
a type erasure property: type manipulations (e.g., type abstractions, folds, pack,
and open) can be erased before runtime without affecting the result.

4. TRANSLATION

Each FJ class is separately compiled into a closed Fω term which imports the types,
method tables, and constructors of other classes and produces its own method table
and constructor. The compilation units are then instantiated and linked together
with a term-level fixpoint constructor.

We begin by describing and formalizing our basic object encoding in sections 4.1
and 4.2. In section 4.3, we give a type-directed translation of FJ expressions. In-
heritance, overriding, and constructors are examined as part of the class encoding
in section 4.4, formalized in section 4.5. Finally, section 4.6 covers linking and
section 4.7 discusses separate compilation. Many aspects of the translation are
mutually dependent, but we believe this ordering yields a reasonably coherent ex-
planation.

4.1 Object encoding

The standard explanation of method invocation in terms of records and fields uses
self-application [Kamin 1988]. In a class-based language, the object record contains
values for all the fields of the object plus a pointer to a record of methods, called
the vtable. The vtable of a class is created once and shared among all objects of the
class. The methods in the vtable expect the object itself as an argument. Suppose

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · Christopher League et al.

class Point has one integer field x and one method getx to retrieve it. Ignoring
types for the moment, the term p0 = {vtab ={getx =λself. (self.x)}, x = 42} could
be an instance of class Point. The self-application term p0.vtab.getx p0 invokes the
method.

What type can we assign to the self argument? The typing derivation for the
self-application term forces it to match the type of the object record itself. That
is, well-typed self-application requires that p0 have type τ where

τ = {vtab :{getx : τ→int}, x : int}

Because τ appears in its own definition, the solution must involve a fixpoint. The
recursive types in our target language will suffice if augmenting the code with fold
and unfold annotations allows for a proper typing derivation. Let the type of self
be

τpt = µself::Type.{vtab :{getx : self→int}, x : int}

Happily, by unfolding the argument self and folding the object we obtain the term

p1 = fold {vtab ={getx =λself : τpt. (unfold self).x}, x = 42}
as τpt

which is well-typed, as is the augmented self-application term (unfold p1).vtab.getx p1.
Suppose class ScaledPoint extends Point with an additional field and method.

The type of an object of class ScaledPoint would be:

τsp = µself::Type.{vtab :{getx : self→int, gets : self→int}, x : int, s : int}

How can we relate the types for objects of these two classes? More to the point, how
can we make a function expecting a Point accept a ScaledPoint? Traditional models
employ subsumption, but τsp is not a subtype of τpt, so other arrangements must
be made. Can the subclass relationship be encoded using explicit (but erasable)
type manipulations?

Java programmers distinguish the static and dynamic classes of an object—
declared types indicate static classes; constructors provide dynamic classes. Static
classes of a given object differ at different program points; dynamic classes are un-
changing. Static classes are known at compile-time; dynamic classes are revealed
at run-time only by reflection and dynamic casts.

We implement this distinction via a pair of existentially-quantified rows. Some
prefix of the type of the object record is known; the rest is hidden, abstract. Con-
sider this static type of a Point object:

τ ′pt = ∃tail::{f :: R{vtab,x}, m :: Type⇒R{getx}}.
µself.{vtab :{getx : self→int ; tail·m self} ; x : int ; tail·f}

The f component of the tuple tail denotes a hidden row missing the labels vtab and
x. Subclasses of Point append new fields by packaging non-empty rows into the
witness type. Similarly, tail contains a component m for appending new methods
onto the vtable. This component is a type operator expecting the recursive self
type, so that it can be propagated to method types in the dynamic class. The
Point object p1 can be packaged into a term of type τ ′pt using the trivial witness
type {f = Abs{vtab,x}, m =λs::Type.Abs{getx}}. To package an object of dynamic
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 9

class ScaledPoint into type τ ′pt we hide a non-trivial witness type, containing the
new field and method:

{f = (s : int ; Abs{vtab,x,s}),
m =λself::Type. (gets : self→int ; Abs{getx,gets})}

Now, objects of different dynamic classes can be repackaged into the type of a
common super class.

This is, in essence, the object encoding we use to compile Java. Before embarking
on the formal translation, we must explore one more aspect: recursive references.
Suppose the Point class has also a method bump which returns a new Point. The
type of objects of class Point must then refer to the type of objects of class Point.
This recursive reference calls for another fixpoint, outside the existential:

µtwin.∃tail. µself.{vtab :{getx : self→int ; bump : self→twin ; tail·m self};
x : int ; tail·f}

Using self as the return type would overly constrain implementations of bump,
forcing them to return objects of the same dynamic class as the receiver. In Java,
type signatures constrain static classes only. Because twin is outside the existential,
its witness type can be distinct from that of self.

We used this technique in [League et al. 1999] to explain self-references, but Java
supports mutually recursive references as well. Suppose class A defines a method
returning an object of class B, and vice versa; ignoring fields entirely for a moment,
define the type

AB ≡ µw::{A :: Type, B :: Type}.
{A =∃tail::Type⇒R{getb}. µself::Type.{getb : self→w·B ; tail self},

B =∃tail::Type⇒R{geta}. µself::Type.{geta : self→w·A ; tail self}}

Using the contextual fold and unfold described earlier, objects of class A can be
folded into the type AB·A. This is the natural generalization of the twin fixpoint.
In the most general case, any class can refer to any other; thus, w must expand to
include all classes. This is the technique we use in the formal translation. In a real
compiler, we would analyze the reference graph and cluster the strongly-connected
classes only. Note that this only addresses the typing aspect; mutual recursion also
has term-level implications (any class can construct objects of or downcast to any
other—see section 4.4) as well as interactions with privacy—see section 5.

4.2 Type translation

This completes our informal account of the object encoding; we now turn to a
formal translation of FJ types. Figure 6 defines several functions which govern the
layout of fields and methods in object types. Square brackets [·] denote sequences.
The sequence s1 ++ s2 is the concatenation of sequences s1 and s2. |s| denotes
the number of elements in s. The domain of a sequence of pairs dom(s) is a set
consisting of the first elements of each pair in s.

The function fieldvec maps a class name C to a sequence of tuples of the form
(f, D), indicating a field of type D named f—except for the first tuple in the sequence,
which is always (vtab, vt), a placeholder for the vtable. Each class simply appends

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · Christopher League et al.

fieldvec(Obj) = [(vtab, vt)] (12)

CT (C) = class C / B {D1 f1; . . . Dm fm; K . . . }

fieldvec(C) = fieldvec(B) ++ [(f1, D1) . . . (fm, Dm)]
(13)

methvec(Obj) = [(dyncast, dc)] (14)

CT (C) = class C / B { . . . K M1 . . . Mm}

methvec(C) = methvec(B) ++ addmeth(B, [M1 . . . Mm])
(15)

(m,) ∈ methvec(B)

addmeth(B, [D m(D1 x1 . . . Dk xk) { . . . } M2 . . . Mm]) = addmeth(B, [M2 . . . Mm])
(16)

(m,) 6∈ methvec(B)

addmeth(B, [D m(D1 x1 . . . Dk xk) { . . . } M2 . . . Mm]) =

[(m, D1 . . . Dk->D)] ++ addmeth(B, [M2 . . . Mm])

(17)

addmeth(B, []) = [] (18)

Fig. 6. Field and method layouts for object types.

its own fields onto the sequence of fields from its super class. (In FJ, the fields of
a class are assumed to be distinct from those of its super classes.)

The layout of methods in an object type is somewhat trickier. Methods that
appear in a class definition are either new or they override methods in the super
class. Overriding methods do not deserve a new slot in the vtable. The function
methvec maps a class name C to a sequence of tuples of the form (m, T), indicating
a method named m with signature T . Signatures have the form D1 . . . Dn->D. The
helper function addmeth iterates through all the methods defined in the class C,
adding only those methods that are new. The first tuple in methvec is always
(dyncast, dc), a pseudo-method used to implement dynamic casts.

Let cn denote the set of class names in the program of interest, including Obj.
For the purpose of presentation, we abbreviate the kind of a tuple of all object
types as kcn. The tuple of row kinds for class C is abbreviated ktail [C].

kcn ≡{(E :: Type) E∈cn}
ktail [C]≡{m :: Type⇒Rdom(methvec(C)), f :: Rdom(fieldvec(C))}

For brevity, we sometimes omit kind annotations. By convention, certain named
type variables are bound by particular kinds—w has kind kcn, self and u have kind
Type, and tail has kind ktail [C], where C should be evident from the context.

In figure 7 we define Rows, a type operator that produces rows containing the
fields and methods introduced between two classes in a subclass relationship. In-
tuitively, Rows[C, A] includes fields and methods in class C but not in its ancestor
class A. Earlier we described how to package dynamic classes into static classes; the
witness type was a tuple of rows containing the fields and methods in the dynamic
class but not in the static class. This is just one use of the Rows operator.

The type operator Rows[C, A] has kind kcn⇒Type⇒ktail [C]⇒ktail [A]. Its first
argument, w::kcn, is a tuple containing object types for all classes in the compilation
unit. The next argument, u::Type, is a universal type used to implement dynamic
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 11

Rows[C, C] = λw::kcn. λu::Type. λtail::ktail [C]. tail (19)

Rows[Obj,>] = λw::kcn. λu::Type. λtail::ktail [Obj].
{m =λself::Type. (dyncast : self→∀α::Type. (u→maybe α)→maybe α ; tail·m self)

f = tail·f}
(20)

CT (C) = class C / B {D1 f1 . . . Dn fn K M1 . . . Mm}

Rows[B, A] = τ addmeth(B, [M1 . . . Mm]) = [(l1, T1) . . . (lm, Tm)]

Rows[C, A] = λw::kcn. λu::Type. λtail::ktail [C].
τ w u {m =λself::Type. (l1 : Ty[self; w;T1] ; . . . lm : Ty[self; w;Tm] ; tail·m self),

f = (f1 : w·D1 ; . . . fn : w·Dn ; tail·f)}

(21)

Ty[self; w; D1 . . . Dn->D] = self→w·D1→ . . .w·Dn→w·D (22)

Empty[C] ≡ {m =λself::Type.Absdom(methvec(C)), f = Absdom(fieldvec(C))}
ObjRcd [C] ≡ λw::kcn. λu::Type. λtail::ktail [C]. λself::Type.

{vtab :{(Rows[C,>] w u tail)·m self} ; (Rows[C,>] w u tail)·f}
SelfTy[C] ≡ λw::kcn. λu::Type. λtail::ktail [C]. µself::Type.ObjRcd [C] w u tail self
ObjTy[C] ≡ λw::kcn. λu::Type.∃tail::ktail [C].SelfTy[C] w u tail
World ≡ λu::Type. µw::kcn. {(E= ObjTy[E] w u) E∈cn }

Fig. 7. Macros for object types.

casts. This will be explained in section; for now, we only observe that the macros in
figure 7 simply propagate u so that it can appear in the type of the dyncast pseudo-
method. The final argument, tail::ktail [C], contains the rows for some subclass of
C.

Rows[C, A] is defined by three cases. First, if C and A are the same class, then
the result is just the tail—those members in subclasses of C. Second, if C is Obj
(the root of the class hierarchy) and A is the special symbol > then the result is
the members declared in Obj. Treating > as the trivial super class of Obj permits
more uniform specifications (since Obj contains members of its own). Finally, in the
inductive case (where C <: A) we look to C’s super class—let’s call it B. Rows[B, A]
produces a type operator for the members between B and A; we need only append
the new members of C. Conveniently, Rows[B, A] has a tail parameter specifically
for appending new members.

The new fields in C are precisely those listed in the declaration of C; we fetch
their types from w and append tail·f. The new methods in C are found using
addmeth, and their type signatures D1 . . . Dn->D are translated to arrow types
self→w·D1→ . . .w·Dn→w·D. We use curried arguments for convenience; an imple-
mentation would use multi-argument functions instead. As shown in the informal
examples, the row for methods is parameterized by the type of self.

Also in figure 7, we use the Rows operator to define macros for several variants of
the object type for any given class. Empty [C] denotes the tuple of empty field and
method rows of kind ktail [C]. ObjRcd [C] assembles the rows into records, leaving the
subclass rows and self type open. SelfTy [C] closes self with a fixpoint, and ObjTy [C]
hides the sublass rows with an existential. Each of these variants is used in our
term translation. All of them remain abstracted over both w (the types of other
objects) and u (the universal type, which is simply propagated into the type of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · Christopher League et al.

pack[C; u; tail; e] =

fold 〈tail′::ktail [C] = tail, e : SelfTy[C] (World u) u tail′〉
asWorld u at λγ::kcn. γ·C

upcast[C; A; u; e] =
open (unfold e asWorld u at λγ::kcn. γ·C) as 〈tail::ktail [C], x : SelfTy[C] (World u) u tail〉

in pack[A; u; Rows[C, A] (World u) u tail;x]

Fig. 8. Macros for pack and upcast transformations.

exp[Γ; u; classes; x] = x (var)

(f,) ∈ fieldvec(C) Γ ` e ∈ C exp[Γ; u; classes; e] = e

exp[Γ; u; classes; e.f] =
open (unfold e asWorld u at λγ. γ·C) as 〈tail, x : SelfTy[C] (World u) u tail〉

in (unfold x).f

(field)

Γ ` e ∈ C (m, B1 . . . Bn->B) ∈ methvec(C) exp[Γ; u; classes; e] = e
Γ ` ei ∈ Di Di <: Bi upcast[Di; Bi; u; exp[Γ; u; classes; ei]] = ei, i ∈ {1..n}

exp[Γ; u; classes; e.m(e1 . . . en)] =
open (unfold e asWorld u at λγ. γ·C) as 〈tail, x : SelfTy[C] (World u) u tail〉

in (unfold x).vtab.m x e1 . . . en

(invoke)

fields(C) = B1 f1 . . . Bn fn
Γ ` ei ∈ Di Di <: Bi upcast[Di; Bi; u; exp[Γ; u; classes; ei]] = ei, i ∈ {1..n}

exp[Γ; u; classes; new C(e1 . . . en)] = (classes.C {}).new e1 . . . en
(new)

Γ ` e ∈ D D <: C

exp[Γ; u; classes; (C)e] = upcast[D; C; u; exp[Γ; u; classes; e]]
(upcast)

Γ ` e ∈ C D <: C exp[Γ; u; classes; e] = e

exp[Γ; u; classes; (D)e] =
open (unfold e asWorld u at λγ. γ·C) as 〈tail, x : SelfTy[C] (World u) u tail〉

in case (unfold x).vtab.dyncast x [(World u)·D] (classes.D {}).proj
of some y ⇒ y else abort [(World u)·D]

(dncast)

Fig. 9. Type-directed translation of FJ expressions.

dyncast). Finally, World constructs a package of the types of objects of all classes,
given the universal type u; as we will see later, the actual universal type is a labeled
sum of object types, and is defined recursively using World .

4.3 Expression translation

Equipped with an efficient object encoding and several type operators for describing
it, we now examine the type-directed translation of FJ expressions. Figures 8 and 9
contain term macros pack and upcast, and six rules governing the judgment
exp[Γ; u; classes; e] = e for term translation. Γ is the FJ type environment, u is
the universal sum type, classes is a record containing the runtime representations
of each class, e is an FJ expression, and e is its corresponding term in the target
language. If e has type C, then its translation e has type (World u)·C (Theorem 5).

The pack macro packages and folds a recursive record term into a closed, com-
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 13

plete object whose type is selected from a mutual fixpoint of the types of objects
of all classes. Supposing that tail is some row tuple in ktail [C] and e has type
SelfTy [C] (World u) u tail, the term pack[C; u; tail; e] has type (World u)·C. Since
unpacking an object binds a type variable to the hidden witness type, it is not as
convenient to define as a macro, and we perform it inline instead.

The upcast macro opens a term representing an object of class C and repackages
it as a term representing an object of some super class A. The object term e has
type (World u)·C where C <: A, but dynamically it might belong to some subclass
D <: C. The open binds the type variable tail to the hidden row types that represent
members in D but not in C. The upcast macro then uses Rows to prefix tail with
the types of members in C but not in A. Finally, upcast calls on the pack macro
to hide the new tail, yielding an object term of type (World u)·A.

These macros simply and effectively formalize the encoding techniques demon-
strated in the previous section. Importantly, they use type manipulations only
(fold, unfold, open). Since these operations are erased before runtime, the pack

and upcast macros have no impact on performance.
We now explain each of the translation rules in figure 9, beginning with (var).

Variables in FJ are bound as method arguments. Methods are translated as cur-
ried abstractions binding the same variable names. Therefore, variable translation
(var) is trivial. An upcast expression (C)e (where Γ ` e ∈ D and D <: C) is also
trivial; the rule (upcast) delegates its task to the macro of the same name.

The field selection expression e.f translates to an unfold-open-unfold-select idiom
in the target language (field). In this sequence, the select alone has runtime effect.
Method invocation e.m(e1 . . . en) augments the idiom with applications to self and
the other arguments, but there is one complication. The FJ typing rule permits
the actual arguments to have types that are subclasses of the types in the method
signature. Since our encoding does not utilize subtyping, the function selected
from the vtable expects arguments of precisely the types in the method signature.
Therefore, we must explicitly upcast all arguments. Rule (invoke) formalizes the
self-application technique demonstrated earlier.

The code to create a new object of class C essentially selects and applies C’s
constructor from the classes record. Until we explain class encoding and linking,
the type of classes will be difficult to justify. Presently it will suffice to say that
classes.C applied to the unit value {} returns a record which contains a field new—
the constructor for class C. The translation (new) upcasts all the arguments, then
fetches and applies the constructor.

The final case, dynamic casts, may appear quite magical until we reveal the
implementation of the dyncast pseudo-method in the next section. For now it is
enough to treat dyncast as a function of type self→∀α. (u→maybe α)→maybe α,
where self is the type of the unfolded unpacked object bound to x. The argument
of (unfold x).vtab.dyncast x [τ] is a projection function, attempting to convert a
value of type u to an object of type τ . The record classes.C {} contains, in addition
to the field new, a proj field of type u→maybe ((World u)·C). Thus if we select the
dyncast method from an object, instantiate it with the object type for some class
C, then pass it the projection for class C, it will return some C object if the cast
succeeds, or none if it fails. In case of failure, evaluation aborts. In full Java, we
would throw a ClassCast exception.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · Christopher League et al.

Note that Featherweight Java’s stupid casts [Igarashi et al. 1999] are not compiled
at all. They arise in intermediate results during evaluation, but should not appear
in valid source-level programs.

The expression translation judgment exp preserves types. Informally, if e has
type C, then its translation has type (World u)·C (for some type u). To state this
property formally, we must first translate a FJ typing environment Γ:

env[u; Γ, x : D] = env[u; Γ], x : (World u)·D
env[u; ◦] = ◦

It is easy to show by induction that env[u; Γ] is a well-formed environment, assum-
ing that the range of Γ is a subset of cn. We are now prepared to state formally
the type preservation theorem:

Theorem 1 (Type preservation). If Φ ` u :: Type,
Φ; ∆ ` classes :{Classes (World u) u} and Γ ` e ∈ C, then
Φ; ∆,env[u; Γ] ` exp[Γ; u; classes; e] : (World u)·C.

The detailed proof is in appendix C, but here is an overview. It proceeds by
induction on the structure of e. All cases are straightforward if we factor out and
prove several properties as lemmas. First, we must establish a correspondence be-
tween the fields used in the FJ semantics and the fieldvec relation used for object
layout (likewise between mtype and methvec). Second, we must establish the corre-
spondence between pairs in fieldvec (or methvec) and elements in Rows. All these
correspondences are proved by induction on the class hierarchy. Finally, we must
show that the pack and upcast macros return expressions of the expected type.
These can be proved by inspection, but the latter argument requires a non-trivial
coherence property for Rows.

4.4 Class encoding

Apart from defining types, classes in FJ serve three other roles: they are extended,
invoked to create new objects, and specified as targets of dynamic casts. In our
translation, each class declaration is separately compiled into a module exporting
a record with three elements—one to address each of these roles. We informally
explain our techniques for implementing inheritance, constructors, and dynamic
casts, then give the formal translation of class declarations.

In a class-based language, each vtable is constructed once and shared among all
objects of the same class. In addition, the code of each inherited method should be
shared by all inheritors. How might we implement the Point methods so that they
can be packaged with a ScaledPoint? We make the method record polymorphic
over the tail of the self type:

dictPT = Λtail::ktail [PT].{getx =λself : spt. (unfold self).x}

where spt = µα.{vtab :{getx :α→int ; tail·m α} ; x : int ; tail·f}

We call this polymorphic record a dictionary. By instantiating it with different
tails, we can directly package its contents into objects of subclasses. Instantiated
with empty tails (e.g., Empty [PT]), this dictionary becomes a vtable for class Point.
Suppose the ScaledPoint subclass inherits getx and adds a method of its own. Its
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 15

dictionary would be:

dictSP = Λtail::ktail [SP].{getx = (dictPT [rsp]).getx,
gets =λself : ssp. (unfold self).s}

where rsp = Rows[SP, PT] (World u) u Empty [SP]
and ssp = µα.{vtab :{getx :α→int ; gets :α→int ; tail·m α} ;

x : int ; s : int ; tail·f}

This dictionary can be instantiated with empty tails to produce the ScaledPoint
vtable. With other instantiations, further subclasses can inherit either of these
methods. The dictionary is labeled dict in the record exported by the class trans-
lation.

Constructors in FJ are quite simple; they take all the fields as arguments in the
correct order. Fields declared in the super class are immediately passed to the
super initializer. We translate the constructor as a function which takes the fields
as curried arguments, places them directly into a record with the vtable, and then
folds and packages the object. The constructor function is labeled new in the class
record. In section 5, we describe how to implement more realistic constructors.

Implementing dynamic cast in a strongly-typed language is challenging. Some-
how we must determine whether an arbitrary, abstractly-typed object belongs to
a particular class. If it does belong, we must somehow refine its type to reflect
this new information. Exception matching in SML poses a similar problem. To
address these issues, Harper and Stone [1998] introduce tags—values which track
type information at runtime. If a tag of abstract type Tag α equals another tag of
known type Tag τ , then we update the context to reflect that α = τ . Note that this
differs from intensional type analysis [Harper and Morrisett 1995], which performs
structural comparison and does not distinguish named types.

Tags work well with our encoding; in an implementation that supports assign-
ment and an SML front-end, it may be a good choice. In this formal presentation,
however, type refinement complicates the soundness proof and the imperative na-
ture of maketag constrains the operational semantics, which is otherwise free of
side effects. maketag implements a dynamically extensible sum, which is needed for
SML exceptions, but is overkill for classes in FJ.

We propose a simpler approach, which co-opts the dynamic dispatch mechanism.
The vtable itself provides a kind of runtime class information. A designated method,
if overridden in every class, could return the receiver at its dynamic class or any
super class. We just need a runtime representation of the target class of the cast,
and some way to connect that representation to the corresponding object type. For
this, we can use the standard sum type and a ‘one-armed’ case. Let u be a sum
type with a variant for each class in the class table. The function

λx :u. case x of C y ⇒ some [ObjTy [C] (World u) u] y
else none [ObjTy [C] (World u) u]

could dynamically represent class C. To connect it to the object type, we make the
dyncast method polymorphic, with the type

self→∀α. (u→maybe α)→maybe α

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · Christopher League et al.

Dict [C] ≡ λw::kcn. λu::Type. λself::Type.{(Rows[C,>] w u Empty[C])·m self}
Ctor [C] ≡ λw::kcn.w·D1→ . . .w·Dn→w·C

where fields(C) = D1 f1 . . . Dn fn
Proj [C] ≡ λw::kcn. λu::Type. u→maybe w·C
Inj [C] ≡ λw::kcn. λu::Type.w·C→u
Class[C] ≡ λw::kcn. λu::Type.{dict :∀tail::ktail [C].Dict [C] w u (SelfTy[C] w u tail),

proj : Proj [C] w u, new : Ctor [C] w}

Classes ≡ λw::kcn. λu::Type. ((E : 1→Class[E] w u ;) E∈cn Abscn)
ClassF [C] ≡ ∀u::Type. Inj [C] (World u) u→Proj [C] (World u) u→

{Classes (World u) u}→1→Class[C] (World u) u

Fig. 10. Macros for dictionary, constructor, and class types.

This method can check its own class against the target class by injecting self and
applying the function argument. If the result is none, then it tries again by injecting
as the super class, and so on up the hierarchy.

With this solution, we must be careful to preserve separate compilation—the
universal type u includes a variant for every class in the program. Fortunately,
in a particular class declaration we need only inject objects of that class. Class
declarations can treat u as an abstract type and take the injection function as an
argument. Then only the linker needs to know the concrete u type.

4.5 Class translation

We now explore the formal translation of class declarations and construction of
their method dictionaries. In figure 10 we define several macros for describing
dictionary and class types. Figure 11 gives translations for each component of the
class declaration.

Each class is separately compiled to code that resembles an SML functor—a
set of definitions parameterized by both types and terms. Linking—the process
of instantiating the separate functors and combining them into single coherent
program—will be addressed in the next section. Our compilation model is the
subject of section 4.7.

cdec[C] produces the functor corresponding to class C; see the definition in the
top left of figure 11. The code has one type parameter: u, the universal type
used for dynamic casts. Following it are two function parameters for injecting and
projecting objects of class C. The next parameter is classes, a record containing
definitions for other classes that are mutually recursive with C (for convenience, we
assume that each class refers to all the others). The final parameter is of unit type;
it simply delays references to classes so that linking terminates.

In the functor body, we define dict (using the macro dict) and vtab (the trivial
instantiation of dict). dict is placed in the class record (so subclasses can inherit
its methods); vtab is passed to the new macro which creates the constructor code.
The constructor is exported so that other classes can create C objects; and, finally,
the projection function proj (a functor parameter) is exported so other classes can
dynamically cast to C.

The dictionary for class Obj is hard-coded as dict[Obj; . . .]. Its dyncast method
injects self at class Obj, passes this to the proj argument and returns the result. If
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 17

Class declaration translation:

cdec[C] = Λu::Type.λinj : Inj [C] (World u) u.λproj : Proj [C] (World u) u.
λclasses :{Classes (World u) u}.λ : 1.
let dict :∀tail::ktail [C].Dict [C] (World u) u (SelfTy[C] (World u) u tail)

= dict[C; u; inj; classes]
in let vtab = dict [Empty[C]]

in {dict = dict, proj = proj, new = new[C; u; vtab]}

(23)

Dictionary construction:

dict[Obj; u; inj; classes] = Λtail::ktail [Obj].

{dyncast =λself : SelfTy[C] (World u) u tail.Λα::Type.λproj : u→maybe α.
proj (inj pack[Obj; u; tail; self])}

(24)

CT (C) = class C / B { . . . } dom(methvec(C)) = [l1 . . . ln]

dict[C; u; inj; classes] = Λtail::ktail [C].
let super : Dict [B] (World u) u (SelfTy[C] (World u) u tail)

= (classes.B {}).dict [Rows[C, B] (World u) u tail]
in {l1 = meth[C; l1; u; tail; inj; classes; super], . . . ,

ln = meth[C; ln; u; tail; inj; classes; super]}

(25)

Constructor code:

fields(C) = D1 f1 . . . Dn fn

new[C; u; vtab] = λf1 : (World u)·D1. . . .λfn : (World u)·Dn.
let x= fold {vtab = vtab, f1 = f1, . . . ,fn = fn}

as SelfTy[C] (World u) u Empty[C]

in pack[C; u; Empty[C];x]

(26)

Method code:

meth[C; dyncast; u; tail; inj; classes; super] =

λself : SelfTy[C] (World u) u tail.Λα::Type.λproj : u→maybe α.
case proj (inj pack[C; u; tail; self])

of some x⇒ some [α] x else super.dyncast self [α] proj

(27)

CT (C) = class C / B { . . . K M1 . . . Mn}
m not defined in M1 . . . Mn

meth[C; m; u; tail; inj; classes; super] = super.m
(28)

CT (C) = class C / B { . . . K M1 . . . Mn} ∃j : Mj = A m(A1 x1 . . . Am xm) { ↑ e;}
Γ = x1:A1, . . . , xm:Am, this:C Γ ` e ∈ D D <: A exp[Γ; u; classes; e] = e

meth[C; m; u; tail; inj; classes; super] =

λself : SelfTy[C] (World u) u tail.λx1 : (World u)·A1. . . .λxm : (World u)·Am.
let this : (World u)·C= pack[C; u; tail; self]
in upcast[D; A; u; e]

(29)

Fig. 11. Translation of class declarations.

the class tags do not match, dyncast indicates failure by returning none; there is
no super class to test. For all other classes, dict fetches the super class dictionary
from classes and instantiates it as super. It then uses meth to construct code for
each method label in methvec.

meth supports three cases: it (1) produces the dyncast method (which must
be overridden in every class), (2) inherits a method from the super class, or (3)
constructs a new method body by translating FJ code.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · Christopher League et al.

Tagged =λu::Type. [[(C : (World u)·C) C∈cn]]

u = µu::Type.Tagged u

prog[e] = let xcn = link {(C= cdec[C]) C∈cn} in exp[◦; u;xcn ; e]

link = λx :{(C : ClassF [C]) C∈cn}.
fix [Classes (World u) u]

(λclasses :{Classes (World u) u}. {(C=x.C [u] injC projC classes) C∈cn})
where

injC =λx : (World u)·C. fold injTagged u
C x as u

projC =λx : u. case unfold x of C y ⇒ some [(World u)·C] y
else none [(World u)·C]

Fig. 12. Program translation and linking.

4.6 Linking

Finally, we must instantiate and link the separate class modules together into a
single program. Figure 12 gives the translation for a complete FJ program. The
link function creates a record of classes from a record of the class functors. The
result is bound to xcn and used as the classes parameter in translating the main
program expression e.

link uses fix to create a fixpoint of the record of classes. Each class functor in x
has one type parameter and three value parameters. Tagged was defined in figure 10
as a parameterized sum type with a variant for the object type of each class in the
class table. We instantiate each x.C with the fixed point of Tagged . Next we pass
the injection and projection functions, injC and projC. The final argument to x.C is
the classes record itself.

4.7 Separate compilation

Our translation supports separate compilation, but the formal presentation does
not make this clear. In this section, we describe our compilation model and justify
that claim.

What must be known to compile a Java class C to native code? At a minimum, we
must know the fields and methods of all super classes, to ensure that the layout of C’s
vtable and objects are consistent. Next, it is helpful to know enough about classes
referenced by C so that the offsets of their fields and methods can be embedded
in the code. These principles do not mean that all referenced classes must be
compiled together. Indeed, as long as the above information is known, classes can
be compiled separately, in any order.

In our translation, we need not just offsets but the full type information for super
classes and referenced classes. If C refers to field x from class D, we need to know all
about the type of x (E, for example) as well. This clearly involves extracting type
information from more classes, although not necessarily every class in the program.
Even so, each class can still be compiled separately, in any order, assuming the
requisite types are available.

A reasonable compilation strategy starts with some root set of classes and builds
a dependence graph. For a given program, the root set contains just the class
with the main method; for a library, it includes all exported classes. Next, traverse
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 19

the graph bottom-up. Comple each class separately, but propagate the necessary
information from C to all those classes that depend on it. Of course, there may
be cyclic dependencies, represented by strongly-connected components (clusters) in
the graph. In these cases, we extract type information from all members of the
cluster before compiling any of them. Still, each class in the cluster is compiled
separately.

A hallmark of whole-program compilation is that library code must be compiled
along with application code. This is clearly not necessary in our model. Library
classes would never depend on application classes, so they can be compiled in
advance. The reason that our formal translation uses the macro World (containing
object types for every class in the program) is that, in the most general case,
every class in an FJ program refers to every other class. Thus, our translation
assumes that the entire program falls within one strongly-connected cluster. In
practice, World would include just the classes in the same cluster as the class being
compiled.

5. EXTENSIONS

Our translation extends to support many features of Java which are excluded from
FJ. Null references are encoded by lifting all external object types to sum types
with a null alternate (just like the maybe type). Then, all object operations must
verify that the object pointer is not null. Our target calculus, unlike JVML, can
express that an object is non-null, so null pointer checks can be safely hoisted.

Static members, interface fields, and multiple parameterized constructors can be
added to the class record, along with the dictionary and tag. Mutable fields are
easily modeled using mutable records. As required by the JVM, the new function
allocates the object record with a default ‘zero’ value for each field. Then any public
constructor can be invoked to assign new values to the fields. Super invocations
select the method statically from the super class dictionary (as is currently used in
dyncast). Java exceptions work similarly to those of SML.

Private methods are defined along with the other methods. Since they can neither
be called from subclasses nor overridden, we simply omit them from the vtable
and dictionary. Protected and package scopes are difficult, however, because they
transcend compilation unit boundaries. In Moby, Fisher and Reppy [1999] use two
distinct views of classes, a class view and an object view. These correspond roughly
to the dict and new fields of our class encoding. If we export a class outside its
definitional package, all protected methods and fields should be hidden from the
object view but not the class view while those of package scope should be hidden
from both.

Private fields

Private fields can be hidden from outsiders using existential types [League et al.
1999]. For convenience, assume that the private fields of each class in the hier-
archy are collected into separate records. Suppose that Point has private fields
x and y, and public field z; and ScaledPoint has private field s. The layout for
a ScaledPoint object would be {vtab, Pt :{x, y}, z, SPt :{s}}. With the pri-
vate fields separated like this, it is easy to hide their types separately. (Using a
flat representation is possible, but this separation allows a simpler, more orthog-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · Christopher League et al.

onal presentation.) We embed each class functor in an existential package, where
the witness type includes the types of the private fields of that class. From in-
side class ScaledPoint, we open the Point package, binding a type variable α
to represent the private fields of Point. Then, our local view of the object is
{vtab, Pt :α, z, SPt :{s}}. Using dot notation [Cardelli and Leroy 1990] for exis-
tential types makes this encoding more convenient, but is not required.

Unfortunately, privacy interacts with mutual recursion. Suppose that A has a
private field b of class B and that B has a method geta that returns an object of class
A. From within class A, accessing this.b is allowed, as is invoking this.b.geta().
It is more difficult to design an encoding that also allows this.b.geta().b. Using
the existential interpretation of privacy described above, each class has its own
view of the types of all other objects. From within class A, private fields of other
objects of class A are visible. Private fields of objects of other classes are hidden,
represented by type variables. In our example, this.b would have a type something
like “B with private fields β” where β is the abstract type. Likewise, from within
class B, the type of method geta might be self→(“A with private fields α”). The
challenge is to allow class A to see that the α in the type of geta is actually the
known type of its own private fields.

Propagating this information is especially tricky given the limitations of the iso-
recursive types used in our target calculus. We have developed a solution which does
not require extending the language. Briefly, we need to parameterize everything
(including the hidden type itself) by the types of objects of other classes. Then,
each class can instantiate the types of the rest of the world using concrete types
for its own private fields (wherever they may lurk in other classes) and abstract
types for the rest. The issues are subtle and a formal treatment is outside the
scope of this article. We are considering extending FJ itself with privacy in order
to elucidate the technique.

Interfaces

Given an object of interface type, we know nothing about the shape of its vtable.
There are various ways of locating methods in interface objects. Proebsting et al.
[1997] construct a per-class dictionary that maps method names to offsets in the
vtable. Krall and Grafl [1997] construct a separate method table (called an itable)
for each declared interface, storing them all somewhere in the vtable. Although
they are not clear on how to use the itable, there appear to be two choices. First,
we can search for the appropriate itable in the vtable, which amounts to lookup of
interface names rather than method names. Second, when casting an object from
class type to interface type, we can select the itable and then pair it with the object
itself. This avoids name lookup entirely but requires minor coercions when casting
to and between interface types.

Our translation can be extended to support both strategies. For the first strategy,
all we need is to introduce unordered records into our target language (see [League
et al. 1999]), with a primitive for dictionary lookup. All the itables for a class would
be collected into a separate unordered record, itself an element of the still ordered
vtable. Then, casting an object to an interface type only requires repackaging (a
runtime no-op) to hide those entries not exported by the current interface.

We can also follow the latter strategy, representing interface objects as a pair
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 21

where the type of the underlying object is concealed by an existential type. For
example, an object which implements the Runnable interface includes a method
run() which can be invoked to start a new thread. In our target language, a
Runnable object is represented as ∃α::Type.{itab :{run :α→1}, obj :α}. To invoke
the method, we open the existential, select the method from the itab, select the obj,
and apply. With this representation, interface method invocations are about the
same cost as normal method invocations, although upward casts to interface types
are no longer free.

6. RELATED WORK

Fisher and Mitchell [1998] use extensible objects to model Java-like class constructs.
Our encoding does not rely on extensible objects as primitives, but it may be viewed
as an implementation of some of their properties in terms of simpler constructs.
Rémy and Vouillon [1997] use row polymorphism in Objective ML for both class
types and type inference on unordered records. Our calculus is explicitly typed,
but we use ordered rows to represent the open type of self.

Our object representation is superficially similar to several of the classic encodings
in Fω-based languages [Bruce et al. 1999; Pierce and Turner 1994]. As in the Abadi,
Cardelli, and Viswanathan encoding [1996], method invocation uses self-application;
however, we hide the actual class of the receiver using existential quantification over
row variables instead of splitting the object into a known interface and a hidden
implementation. This allows reuse of methods in subclasses without any overhead.
We use an analog of the recursive-existential encoding due to Bruce [1994] to give
types to other arguments or results belonging to the same class or a subclass, as
needed in Java, without over-restricting the type to be the same as the receiver’s.

Several other researchers have described type-preserving compilation of object-
oriented languages. Wright et al. [1998] compile a Java subset to a typed interme-
diate language, but they use unordered records and resort to dynamic type checks
because their system is too weak to type self application. Crary [1999] encodes
the object calculus of Abadi and Cardelli [1996] using existential and intersection
types in a calculus of coercions. Glew [2000a] translates a simple class-based object
calculus into an intermediate language with F-bounded polymorphism [Canning
et al. 1989; Eifrig et al. 1995] and a special ‘self’ quantifier.

Comparing object encodings

A more detailed comparison with the work of Glew and Crary is worthwhile. The
three encodings share many similarities, and appear to be different ways of express-
ing the same underlying idea. As Glew remarks, “both Crary and League et al.’s
ideas can be seen as encodings of the self quantifier introduced in this paper” [Glew
2000a, page 9]. He did not present a detailed comparison, but the statement is
indeed true.

In this section, we will attempt to clarify the connections between these en-
codings. Following Bruce et al. [1999], we can specify object interfaces as type
operators, so that the type of the self argument can be plugged in. The Point
interface, for example, would be represented as IP = λα::Type.{getx :α→int}.

Glew used a twist on F-bounded polymorphism to encode method tables that
could be reused in subclasses. This leads naturally to an object encoding using

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · Christopher League et al.

an F-bounded existential (FBE): ∃α ≤ I(α).α, which Glew writes as self α.I(α).
Typically, the witness type is recursive; it is a subtype of its unrolling.

The connection between self and the F-bounded existential was recognized in-
dependently by Glew and ourselves.1 We can derive the rules governing self from
those for F-bounded existentials. Glew uses equi-recursive types in [2000a]; a re-
striction to iso-recursive types is possible, though awkward [Glew 2000b]. The rules
for packing and opening self types must simultaneously fold and unfold in precisely
the right places.

Self application is typable in FBE because the object, via subsumption, enjoys
two types: the abstract type α and the interface type I(α). Crary [1999] encodes
precisely the same property as an intersection type: ∃α. α ∧ I(α). Again, the
witness type is recursive. With equi-recursive types, a value of type µ I also has
type I (µ I); it could be packaged as α∧ I(α). Crary makes this encoding practical
using a calculus of coercions—explicit retyping annotations. Coercions can drop
fields from the end of a record, fold and unfold recursive types, mediate intersection
types, and instantiate quantified types. All coercions are erasable.

We will now show how our own encoding, based on row polymorphism, relates
to these. A known technique for eliminating an F-bound is to replace it with a
higher-order bound and a recursive type. That is, we could represent ∃α ≤ I(α).α
as ∃δ ≤ I.µ δ. Using a point-wise subtyping rule, the interface type operators
themselves enjoy a subtyping relationship. Iso-recursive types can be used directly
with this technique because the fixpoint is separate from the existential.

Next, though it is less efficient, we can implement the higher-order subtyping
with a coercion function:

∃δ :: Type⇒Type.{c : δ (µ δ)→ I (µ δ), o : µ δ}

To select a method from an object, we first open the package, select the coercion
c, and apply it to the unfolding of o. This yields an interface whose methods are
then directly applicable to o.

Using a general function for this coercion yields more flexibility than we require
to implement Java. All the function ever needs to do is drop fields from records.
With row polymorphism, we can express the result of pre-applying the coercions at
all levels. The encodings of Crary and Glew work by supplying two distinct views
of the object: an abstract subtype of a concrete interface type. With row poly-
morphism, that distinction is unnecessary; we can hide just the unknown portion
of the interface directly.

All three of these encodings are operationally efficient. The primary differences
between them are in the complexity required of the target calculus. In scaling them
to realistic compilers and source languages, other differences may emerge.

7. CONCLUSION

We have developed an efficient encoding of key Java constructs in a simple, im-
plementable typed intermediate language. The encoding, after type erasure, has
the same operational behavior as a standard implementation of self-application.
Our strategy extends naturally to a significant subset of Java. We support mutual

1Personal communication, August 2000

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 23

recursion and dynamic cast while retaining separate compilation. The formal trans-
lation using Featherweight Java allows comprehensible type-preservation proofs and
serves as a starting point for extending the translation to new features.

This translation is being implemented as a new front-end to the SML/NJ com-
piler. It loads Java class files, translates them to FLINT, and then into native
code. We can currently compile toy Java programs; the intermediate code success-
fully type-checks after every phase. Preliminary measurements of both compilation
and run times are promising, but some work remains before we can run real bench-
marks.

APPENDIX

A. FEATHERWEIGHT JAVA SEMANTICS

These rules are reprinted from [Igarashi et al. 1999], with a few adaptations.

Field lookup

fields(Obj) = • (30)

CT (C) = class C / B {C1 f1; . . . Cn fn; K . . . }
fields(B) = B1 g1 . . . Bm gm

fields(C) = B1 g1 . . . Bm gm, C1 f1 . . . Cn fn
(31)

Method lookup

CT (C) = class C / B { . . . K M1 . . . Mn}
∃j : Mj = D m(D1 x1 . . . Dm xm) { ↑ e;}

mtype(m, C) = D1 . . . Dm->D
mbody(m, C) = (x1 . . . xm, e)

(32)

CT (C) = class C / B { . . . K M1 . . . Mn}
m not defined in M1 . . . Mn

mtype(m, C) = mtype(m, B)
mbody(m, C) = mbody(m, B)

(33)

Valid method overriding

mtype(m, B) = C1 . . . Cn->C0

override(m, B, C1 . . . Cn->C0)
(34)

/∃T such that mtype(m, B) = T

override(m, B, C1 . . . Cn->C0)
(35)

Computation e −→ e′

fields(C) = D1 f1 . . . Dn fn

(new C(e1 . . . en)).fi −→ ei
(R-Field)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · Christopher League et al.

mbody(m, C) = (x1 . . . xn, e0)
(new C(e1 . . . em)).m(d1 . . . dn) −→
[d1/x1, . . . , dn/xn, new C(e1 . . . em)/this] e0

(R-Invk)

C <: D

(D)new C(e1 . . . en) −→ new C(e1 . . . en)
(R-Cast)

Subtyping C <: D

C <: C (36)

CT (C) = class C / B { . . . } B <: A

C <: A
(37)

Class typing

K = C(B1 g1 . . . Bn gn, C1 f1 . . . Cm fm)
{super(g1 . . . gn);
this.f1 = f1; . . . this.fm = fm;}

fields(B) = B1 g1 . . . Bn gn
Mi ok in C ∀i ∈ {1 . . . k}

class C / B {C1 f1; . . . Cm fm; K M1 . . . Mk} ok
(38)

Method typing

x1 : D1, . . . , xn : Dn, this : C ` e ∈ E E <: D
CT (C) = class C / B { . . . }

D m(D1 x1 . . . Dn xn) { ↑ e;} ok in C
(39)

Expression typing Γ ` e ∈ C

Γ ` x ∈ Γ(x) (T-Var)

Γ ` e ∈ C fields(C) = D1 f1 . . . Dn fn

Γ ` e.fi ∈ Di
(T-Field)

Γ ` e ∈ C mtype(m, C) = D1 . . . Dn->D
Γ ` ei ∈ Ci Ci <: Di (∀i ∈ {1 . . . n})

Γ ` e.m(e1 . . . en) ∈ D
(T-Invk)

fields(C) = D1 f1 . . . Dn fn
Γ ` ei ∈ Ci Ci <: Di (∀i ∈ {1 . . . n})

Γ ` new C(e1 . . . en) ∈ C
(T-New)

Γ ` e ∈ D D <: C

Γ ` (C)e ∈ C
(T-UCast)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 25

Γ ` e ∈ D C <: D C 6= D

Γ ` (C)e ∈ C
(T-DCast)

Γ ` e ∈ D C </: D D </: C

Γ ` (C)e ∈ C
(T-SCast)

B. TARGET LANGUAGE SEMANTICS

B.1 Static judgments

Φ maps type variables to their kinds and ∆ maps term variables to their types.

Kind formation `κ kind

`Type kind (40)

`RL kind (41)

`κ kind `κ′ kind
`κ⇒κ′ kind

(42)

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})
`κi kind (∀i ∈ {1 . . . n})
` {l1 ::κ1 . . . ln ::κn} kind

(43)

Kind environment formation `Φ kind env

` ◦ kind env (44)

`Φ kind env `κ kind
`Φ, α ::κ kind env

(45)

Type formation Φ ` τ :: κ

`Φ kind env α ∈ dom(Φ)
Φ ` α :: Φ(α)

(46)

Φ, α ::κ ` τ :: κ′

Φ ` λα::κ. τ :: κ⇒κ′
(47)

Φ ` τ1 :: κ′⇒κ Φ ` τ2 :: κ′

Φ ` τ1 τ2 :: κ
(48)

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})
Φ ` τi :: κi (∀i ∈ {1 . . . n})

Φ ` {l1 = τ1 . . . ln = τn} :: {l1 ::κ1 . . . ln ::κn}
(49)

Φ ` τ :: {l1 ::κ1 . . . ln ::κn}
Φ ` τ ·li :: κi

(50)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · Christopher League et al.

Φ ` τ1 :: Type Φ ` τ2 :: Type

Φ ` τ1→τ2 :: Type
(51)

Φ, α ::κ ` τ :: κ
Φ ` µα::κ. τ :: κ

(52)

Φ, α ::κ ` τ :: Type

Φ ` ∀α::κ. τ :: Type
(53)

Φ, α ::κ ` τ :: Type

Φ ` ∃α::κ. τ :: Type
(54)

Type equivalence Φ ` τ = τ ′ :: κ

Φ ` τ1 :: κ1 Φ, α ::κ1 ` τ2 :: κ2

Φ ` (λα::κ1. τ2) τ1 = τ2[α := τ1] :: κ2

(55)

Φ ` τ :: κ⇒κ′ α /∈ dom(Φ)
Φ ` λα::κ. τ α = τ :: κ⇒κ′

(56)

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})
Φ ` τi :: κi (∀i ∈ {1 . . . n})
Φ ` {l1 = τ1 . . . ln = τn}·li = τi :: κi

(57)

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})
Φ ` τ :: {l1 ::κ1 . . . ln ::κn}

Φ ` {l1 = τ ·l1 . . . ln = τ ·ln} = τ :: {l1 ::κ1 . . . ln ::κn}
(58)

Φ ` τ :: κ
Φ ` τ = τ :: κ

(59)

Φ ` τ1 = τ2 :: κ
Φ ` τ2 = τ1 :: κ

(60)

Φ ` τ1 = τ2 :: κ Φ ` τ2 = τ3 :: κ
Φ ` τ1 = τ3 :: κ

(61)

Φ, α ::κ ` τ1 = τ2 :: κ′

Φ ` λα::κ. τ1 = λα::κ. τ2 :: κ⇒κ′
(62)

Φ ` τ1 = τ ′1 :: κ′⇒κ Φ ` τ2 = τ ′2 :: κ′

Φ ` τ1 τ2 = τ ′1 τ
′
2 :: κ

(63)

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})
Φ ` τi = τ ′i :: κi (∀i ∈ {1 . . . n})

Φ ` {l1 = τ1 . . . ln = τn} = {l1 = τ ′1 . . . ln = τ ′n}
:: {l1 ::κ1 . . . ln ::κn}

(64)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 27

Φ ` τ = τ ′ :: {l1 ::κ1 . . . ln ::κn}
Φ ` τ ·li = τ ′·li :: κi

(65)

Φ ` τ1 = τ ′1 :: Type Φ ` τ2 = τ ′2 :: Type

Φ ` τ1→τ2 = τ ′1→τ ′2 :: Type
(66)

Φ ` τ1 = τ ′1 :: Type Φ ` τ2 = τ ′2 :: RL∪{l}

Φ ` l : τ1 ; τ2 = l : τ ′1 ; τ ′2 :: RL−{l}
(67)

Φ ` τ = τ ′ :: R∅

Φ ` {τ} = {τ ′} :: Type
(68)

Φ ` τ = τ ′ :: R∅

Φ ` [[τ]] = [[τ ′]] :: Type
(69)

Φ, α ::κ ` τ1 = τ2 :: κ
Φ ` µα::κ. τ1 = µα::κ. τ2 :: κ

(70)

Φ, α ::κ ` τ1 = τ2 :: Type

Φ ` ∀α::κ. τ1 = ∀α::κ. τ2 :: Type
(71)

Φ, α ::κ ` τ1 = τ2 :: Type

Φ ` ∃α::κ. τ1 = ∃α::κ. τ2 :: Type
(72)

Type environment formation Φ ` ∆ type env

Φ ` ◦ type env (73)

Φ ` ∆ type env Φ ` τ :: Type

Φ ` ∆, x : τ type env
(74)

Term formation Φ; ∆ ` e : τ

Φ ` ∆ type env x ∈ dom(∆)
Φ; ∆ ` x : ∆(x)

(75)

Φ; ∆ ` e : τ Φ ` τ = τ ′ :: Type

Φ; ∆ ` e : τ ′
(76)

Φ; ∆, x : τ ` e : τ ′

Φ; ∆ ` (λx : τ . e) : τ→τ ′
(77)

Φ; ∆ ` e1 : τ ′→τ Φ; ∆ ` e2 : τ ′

Φ; ∆ ` e1 e2 : τ
(78)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · Christopher League et al.

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})
Φ; ∆ ` ei : τi (∀i ∈ {1 . . . n})

Φ; ∆ ` {l1 = e1 . . . ln = en} :{l1 : τ1 . . . ln : τn}
(79)

Φ; ∆ ` e :{l1 : τ1 ; . . . ln : τn ; τ}
Φ; ∆ ` e.li : τi

(80)

Φ, α ::κ; ∆ ` e : τ
Φ; ∆ ` (Λα::κ. e) :∀α::κ. τ

(81)

Φ; ∆ ` e :∀α::κ. τ Φ ` τ ′ :: κ
Φ; ∆ ` e [τ ′] : τ [α := τ ′]

(82)

Φ ` τ :: Type

Φ; ∆ ` abort [τ] : τ
(83)

B.2 Properties of static judgments

Lemma 1 (Normalization). Type reductions are strongly normalizing.

Proof sketch. The type equivalence judgments can be read left-to-right as
reductions. To demonstrate that these reductions are strongly normalizing, we
view the type language as a simply-typed λ-calculus itself, extended with records
(tuples), lists with labeled elements (rows), a base type (Type) and several constants
(→, { · }, [[·]]). The binding operators (µ, ∀, ∃) are also constants, since they are
neither introduced nor eliminated by any reduction rule.

Standard proofs for strong normalization of the simply-typed λ-calculus (see, for
example, [Goguen 1995]) can be adapted to this type language.

Lemma 2 (Confluence). Type reductions are confluent.

Proof sketch. As above, we can adapt a standard proof for confluence of the
simply-typed λ-calculus.

Theorem 2 (Decidability). All static judgments in the previous section are
decidable.

Proof. Judgments for the formation of kinds, kind environments, types, and
type environments are all syntax-directed and trivially decidable.

Type equivalence is not syntax-directed. Since reductions are, however, strongly
normalizing (lemma 1) we have an algorithm for deciding type equivalence: re-
duce τ1 and τ2 to normal form, then test whether they are syntactically congruent
(modulo renaming of bound variables).

Term formation is syntax-directed except for rule (76), which accounts for type
equivalences. If an algorithm always reduces types to normal forms, then the types
of two different expressions can be checked for syntactic congruence, and rule (76)
can be omitted.

B.3 Operational semantics

Values v ::= λx : τ . e | {(l= v)∗} | fix [τ] e | injτl v | Λα::κ. e
| 〈α::κ= τ , v : τ ′〉 | fold v as µα::κ. τ at λγ::κ. s[γ]

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 29

Primitive reductions e ↪→ e′

(λx : τ . e) v ↪→ e[x := v]
(84)

({l1 = v1 . . . ln = vn}).li ↪→ vi
(85)

(fix [τ] e).l ↪→ (e (fix [τ] e)).l
(86)

li = l′k

case inj
[[l1 : τ1 ; ...ln : τn ; τ]]
li

v of

(l′j xj ⇒ ej)j∈{1...m} else e′

↪→ ek[xk := v]

(87)

li 6= l′k (∀k ∈ {1 . . .m})
case inj

[[l1 : τ1 ; ...ln : τn ; τ]]
li

v of

(l′j xj ⇒ ej)j∈{1...m} else e′

↪→ e′

(88)

unfold (fold v as τ at τs) as τ at τs ↪→ v
(89)

(Λα::κ. e) [τ] ↪→ e[α := τ]
(90)

open 〈α::κ= τ ′, v : τ〉 as 〈α::κ, x : τ〉 in e′

↪→ e′[α := τ ′][x := v]

(91)

abort [τ] ↪→ abort [τ]
(92)

Congruence rules e ↪→ e′

e ↪→ e′

e e2 ↪→ e′ e2

(93)

e ↪→ e′

v1 e ↪→ v1 e
′ (94)

e ↪→ e′

{l1 = v1 . . . li−1 = vi−1 li = e li+1 = ei+1 . . . ln = en}
↪→ {l1 = v1 . . . li−1 = vi−1 li = e′ li+1 = ei+1 . . . ln = en}

(95)

e ↪→ e′

e.l ↪→ e′.l
(96)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · Christopher League et al.

e ↪→ e′

injτl e ↪→ injτl e
′ (97)

e ↪→ e′

case e of (li xi ⇒ ei)i∈{1...m} else e′′

↪→ case e′ of (li xi ⇒ ei)i∈{1...m} else e′′

(98)

e ↪→ e′

fold e as τ at τs ↪→ fold e′ as τ at τs
(99)

e ↪→ e′

unfold e as τ at τs ↪→ unfold e′ as τ at τs
(100)

e ↪→ e′

e [τ] ↪→ e′ [τ]
(101)

e ↪→ e′

〈α::κ= τ , e : τ ′〉 ↪→ 〈α::κ= τ , e′ : τ ′〉
(102)

e ↪→ e′

open e as 〈α::κ, x : τ〉 in e1

↪→ open e′ as 〈α::κ, x : τ〉 in e1

(103)

B.4 Soundness

Lemma 3 (Substitution of terms). If Φ; ∆ ` e′ : τ ′ and Φ; ∆, x : τ ′ ` e : τ ,
then Φ; ∆ ` e[x := e′] : τ .

Proof. By induction on the derivation of Φ; ∆, x : τ ′ ` e : τ .

Lemma 4 (Substitution of types). If Φ ` τ ′ :: κ and Φ, α ::κ; ∆ ` e : τ ,
then Φ; ∆[α := τ ′] ` e[α := τ ′] : τ [α := τ ′].

Proof. By induction on the derivation of Φ, α ::κ; ∆ ` e : τ .

Theorem 3 (Subject reduction). If e ↪→ e′ and Φ; ∆ ` e : τ then Φ; ∆ `
e′ : τ .

Proof. By induction on the derivation of e ↪→ e′.

Case (84). (λx : τ . e) v ↪→ e[x := v]. From antecedent, Φ; ∆ ` (λx : τ . e) v : τ ′.
By inversion on (78) and (77), Φ; ∆, x : τ ` e : τ ′, and Φ; ∆ ` v : τ . Finally,
Φ; ∆ ` e[x := v] : τ ′ using lemma 3.

Case (85). ({l1 = v1 . . . ln = vn}).li ↪→ vi. From antecedent,
Φ; ∆ ` {l1 = v1 . . . ln = vn}.li : τ . By inversion on (80) and (79), Φ; ∆ ` vi : τ .

Case (86). (fix [τ] e).li ↪→ (e (fix [τ] e)).li. From
antecedent, Φ; ∆ ` (fix [τ] e).li : τi. By inversion on (80),
Φ; ∆ ` fix [τ] e :{l1 : τ1 ; . . . ln : τn ; τ ′}. By inversion on (3),
Φ; ∆ ` e :{τ}→{τ}, and τ = {l1 : τ1 ; . . . ln : τn ; τ ′}. Using (78),
Φ; ∆ ` e (fix [τ] e) :{l1 : τ1 ; . . . ln : τn ; τ ′}. Then, using (80),
Φ; ∆ ` (e (fix [τ] e)).l : τi.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 31

Case (87). case inj
[[l1 : τ1 ; ...ln : τn ; τ]]
li

v of (l′j xj ⇒ ej)j∈{1...m} else e′ ↪→
ek[xk := v] where li = l′k. From antecedent, Φ; ∆ ` case . . . : τ ′. By inversion on
(9), Φ; ∆, xk : τi ` ek : τ ′ and Φ; ∆ ` inj...li v : [[l1 : τ1 ; . . . ln : τn ; τ]]. By inversion on
(8) and lemma 3, Φ; ∆ ` ek[xk := v] : τ ′.

Case (88). case inj
[[l1 : τ1 ; ...ln : τn ; τ]]
li

v of (l′j xj ⇒ ej)j∈{1...m} else e′ ↪→ e′ where
li 6= l′k,∀k ∈ {1 . . .m}. From antecedent, Φ; ∆ ` case . . . : τ ′. By inversion on (9),
Φ; ∆ ` e′ : τ ′.

Case (89). unfold (fold v as τ at τs) as τ at τs ↪→ v. From antecedent,
Φ; ∆ ` unfold . . . : τ ′. By inversion on (11) and (10), τ ≡ µα::κ. τ0,
τ ′ ≡ (τs τ0)[α := τ], and Φ; ∆ ` v : (τs τ0)[α := τ].

Case (90). (Λα::κ. e) [τ] ↪→ e[α := τ]. From antecedent,
Φ; ∆ ` (Λα::κ. e) [τ] : τ ′. By inversion on (82) and (81), τ ′ must be in the
form of τ1[α := τ], and Φ, α ::κ; ∆ ` e : τ1, and Φ ` τ :: κ. Using lemma 4,
Φ; ∆ ` e[α := τ] : τ1[α := τ], i.e. Φ; ∆ ` e[α := τ] : τ ′.

Case (91). open 〈α::κ= τ ′, v : τ〉 as 〈α::κ, x : τ〉 in e′ ↪→ e′[α := τ ′][x := v].
From antecedent, Φ; ∆ ` open . . . : τ0. By inversion on (2),
Φ; ∆ ` 〈α::κ= τ ′, v : τ〉 :∃α::κ. τ , Φ, α ::κ; ∆, x : τ ` e′ : τ0, and
Φ ` τ0 :: Type. By inversion on (1), Φ; ∆ ` v : τ [α := τ ′]. Using
lemma 4, Φ; ∆, x : τ [α := τ ′] ` e′[α := τ ′] : τ0[α := τ ′]. Using lemma 3,
Φ; ∆ ` e′[α := τ ′][x := v] : τ0[α := τ ′]. This is equivalent to τ0 since α is not free in
τ0.

Case (92). abort [τ] ↪→ abort [τ]. Trivial.
Case (93). e e2 ↪→ e′ e2 where e ↪→ e′. From antecedent, Φ; ∆ ` e e2 : τ . By

inversion on (78), Φ; ∆ ` e : τ ′→τ ; and Φ; ∆ ` e2 : τ ′. By induction hypothesis,
Φ; ∆ ` e′ : τ ′→τ . Using (78), Φ; ∆ ` e′ e2 : τ .

The cases for all the remaining congruence rules (94–103) follow the same pattern:
invert some typing rule, apply induction hypothesis, then apply the same typing
rule.

Lemma 5 (Canonical forms). If v is a value and Φ; ∆ ` v : τ then v has the
canonical form given by the following table.

τ v
τ1→τ2 λx : τ1. e
{l1 : τ1 ; . . . ln : τn ; τ ′} {l1 = v1, . . . ,ln = vn, . . .}

or fix [l1 : τ1 ; . . . ln : τn ; τ ′] e
[[l1 : τ1 ; . . . ln : τn ; τ ′]] injτli v

′

s[µα::κ. τ ′] fold v′ as µα::κ. τ ′ at λγ::κ. s[γ]
∀α::κ. τ ′ Λα::κ. e
∃α::κ. τ ′ 〈α::κ= τ ′′, v′ : τ ′〉

Proof. By inspection, using lemma 2.

Theorem 4 (Progress). If Φ; ∆ ` e : τ then either e is a value or e ↪→ e′.

Proof. By induction on the derivation of Φ; ∆ ` e : τ .

Case (76). direct application of induction hypothesis.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · Christopher League et al.

Case (77). λx : τ . e is a value.
Case (78). Φ; ∆ ` e1 e2 : τ where Φ; ∆ ` e1 : τ ′→τ . By induction hypothesis,

there are three cases: (1) e1 and e2 are both values. Using lemma 5, e1 must have
the form λx : τ . e. Using (84), (λx : τ . e) v ↪→ e[x := v]. (2) e1 is a value and
e2 ↪→ e′2; use (94). (3) e1 ↪→ e′1; use (93).

Case (79). Φ; ∆ ` {l1 = e1 . . . ln = en} :{l1 : τ1 . . . ln : τn}. By induction hypoth-
esis, there are two cases: (1) e1 . . . en are all values; then {l1 = e1 . . . ln = en} is a
value. (2) ei ↪→ e′i for some i; use (95).

Case (80). Φ; ∆ ` e.li : τi. By induction hypothesis, there are three cases: (1) e
is a value, and by lemma 5, it has the form {l1 = v1 . . . ln = vn}. Then, progress
can be made using rule (85). (2) e is a value, and by lemma 5, it has the form
fix [τ] e; then use rule (86). (3) e ↪→ e′; use (96).

Case (3). fix [τ] e is a value.
Case (8). Φ; ∆ ` injτli e : τ . By induction hypothesis, there are two cases: (1) e

is a value; thus injτli e is a value. (2) e ↪→ e′; then, use (97).

Case (9). Φ; ∆ ` case e of (l′j xj ⇒ ej)j∈{1...m} else e′ : τ ′. By induction hy-
pothesis, there are two cases: (1) e is a value. According to lemma 5, it has the
form injτli v. Thus, either (87) or (88) applies. (2) e ↪→ e′; use (98).

Case (10). Φ; ∆ ` fold e as τ at τs : τs τ . By induction hypothesis, there are two
cases: (1) e is a value; then fold e as τ at τs is a value. (2) e ↪→ e′; then use (99).

Case (11). Φ; ∆ ` unfold e as µα::κ. τ at τs : τ ′. By induction hypothesis, there
are two cases: (1) e is a value of type τs (µα::κ. τ). By lemma 5 it has the form
fold v as µα::κ. τ at τs—use (89). (2) e ↪→ e′; then use (100).

Case (81). Λα::κ. e is a value.
Case (82). Φ; ∆ ` e [τ ′] : τ [α := τ ′], where Φ; ∆ ` e :∀α::κ. τ . By induction

hypothesis, there are two cases: (1) e is a value. By lemma 5, it must have the
form Λα::κ. e′; use (90). (2) e ↪→ e′; use (101).

Case (1). Φ; ∆ ` 〈α::κ= τ ′, e : τ〉 :∃α::κ. τ . By induction hypothesis, there are
two cases: (1) e is a value; then 〈α::κ= τ ′, e : τ〉 is a value. (2) e ↪→ e′; then use
(102).

Case (2). Φ; ∆ ` open e as 〈α::κ, x : τ〉 in e′ : τ ′. By induction hypothesis, there
are two cases: (1) e is a value of type ∃α::κ. τ . By lemma 5, it has the form
〈α::κ= τ ′, e : τ〉; use (91). (2) e ↪→ e′; use (103).

Case (83). Φ; ∆ ` abort [τ] : τ . Evaluates to abort [τ] using (92).

C. PROPERTIES OF THE TRANSLATION

C.1 Contents of field/method vectors

Lemma 6 (Method vector). mtype(m, C) = D1 . . . Dn->D0 if and only if
(m, D1 . . . Dn->D0) ∈ methvec(C).

Proof. By induction on the derivation of C <: Obj. In the base case, the impli-
cation holds trivially. Otherwise, let CT (C) = class C / B { . . . K M1 . . . Mn}. We
distinguish two cases:
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 33

(1) m is not defined in M1 . . . Mn. (=⇒) Then, mtype(m, C) = D1 . . . Dn->D0 =
mtype(m, B). Using the inductive hypothesis, (m, D1 . . . Dn->D0) is in methvec(B) and
thus it is also in methvec(C). (⇐=) addmeth(B, [M1 . . . Mn]) could not have added m,
so it must be that (m, D1 . . . Dn->D0) ∈ methvec(B). Using the inductive hypothesis,
mtype(m, B) = D1 . . . Dn->D0 and, in this case, mtype(m, C) = mtype(m, B).

(2) ∃j such that Mj = D0 m(D1 x1 . . . Dn xn) { ↑ e;}. In this case, mtype(m, C) is
directly defined as D1 . . . Dn->D0.
(=⇒) case mtype(m, B) = C1 . . . Cn->C0. Then, from class well-formedness we con-
clude that Ci = Di for i ∈ {0 . . . n}. From the inductive hypothesis, we find that
(m, C1 . . . Cn->C0) ∈ methvec(B). Thus, (m, D1 . . . Dn->D0) ∈ methvec(C).
(=⇒) case /∃T such that mtype(m, B) = T . From inductive hypothesis (in the re-
verse direction), /∃T such that (m, T) ∈ methvec(B). Given this, we can show (by
induction on j) that addmeth adds (m, D1 . . . Dn->D0) to methvec(C).
(⇐=) case (m, C1 . . . Cn->C0) ∈ methvec(B). Therefore, by definition, (m, C1 . . . Cn->C0)
∈ methvec(C). From class well-formedness, we argue that Ci = Di for i ∈ {0 . . . n}.
(⇐=) case /∃T such that (m, T) ∈ methvec(B). Then, addmeth and mtype(m, C) both
assign m the signature D1 . . . Dn->D0.

Lemma 7 (Field vector). If D f ∈ fields(C), then (f, D) ∈ fieldvec(C).

Proof. By induction on the derivation of C <: Obj.

C.2 Object layout

Lemma 8 (Well-kinded rows). If C <: A, then
Φ ` Rows[C, A] :: kcn⇒Type⇒ktail [C]⇒ktail [A].

Proof. By induction on the derivation of C <: A. Observe that ` kcn kind
and, for any D ∈ cn, ` ktail [D] kind . Then, the base case (C = A) holds trivially.
Now, let CT (C) = class C / B {D1 f1; . . . Dn fn; K . . . } and B <: A. Using
the inductive hypothesis, Rows[B, A] has kind kcn⇒ Type⇒ ktail [B]⇒ ktail [A] in
kind environment Φ. The rule (21) constructs a tuple tail′ = {m = . . . , f = . . .}.
Let Φ′ = Φ, w :: kcn, u :: Type, tail :: ktail [C]. It remains to be shown that tail′

has kind ktail [B] in kind environment Φ′. Consider the f component; the argu-
ment for m is similar. Using the definition of ktail [C] and the tuple selection rule
(50), Φ′ ` tail·f :: Rdom(fieldvec(C)). Using the definition of kcn and class table well-
formedness, Φ′ ` w·Dn :: Type. Finally, the row formation rule (5) assigns kind
Rdom(fieldvec(C))−{fn} to the row (fn : w·Dn ; tail·f). Iterate for each label; the result-
ing row has kind Rdom(fieldvec(C))−{C,f1...fn} which is the same as Rdom(fieldvec(B)).

Lemma 9 (Tail position). If C <: B, Φ ` w :: kcn, Φ ` tail :: ktail [C], and
Φ ` self :: Type, then (Rows[C, B] w u tail)·m self has the form (. . . ; tail·m self) and
(Rows[C, B] w u tail)·f has the form (. . . ; tail·f).

Proof. By inspection.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · Christopher League et al.

Lemma 10 (Method layout). If Φ ` w :: kcn, Φ ` tail :: ktail [C],
Φ ` self :: Type, and (m, T) ∈ methvec(C), then
(Rows[C, Obj] w u tail)·m self = (. . . ; m : self→Ty [self; w;T] ; . . . ; tail·m self).

Proof. By induction on derivation of C <: Obj. methvec(Obj) is empty, so the
base case holds trivially. Otherwise, let CT (C) = class C / B { . . . }.

Case (m, T) ∈ methvec(B). Let tail′ = {m =λself::Type. . . ., f = . . .}, as given in
rule (21); according to lemma 8, this has kind ktail [B]. Invoking the inductive
hypothesis (with tail′) we find that

(Rows[B, Obj] w u tail′)·m self
= (. . . ; m : self→Ty [self; w;T] ; . . . ; tail′·m self)

Then, expanding the definition we get

(Rows[C, Obj] w u tail)·m self
= (. . . ; m : self→Ty [self; w;T] ; ; tail·m self)

Case (m, T) 6∈ methvec(B). Then, m must be one of the names m1 . . . mn enumer-
ated in the definition. In this case, the row tail′·m self will contain an element m
of type self→Ty [self; w;T]. This tail′ is passed to Rows[B, Obj], but according to
lemma 9, it will still appear in the result.

Lemma 11 (Field layout). If C <: Obj, Φ ` w :: kcn, Φ ` tail :: ktail [C],
and fieldvec(C) = fieldvec(Obj) ++ [(l1, D1) . . . (ln, Dn)], then
Rows[C, Obj] w u tail = l1 : w·D1 ; . . . ln : w·Dn ; tail·f .

Proof. By induction on the derivation of C <: Obj. Similar to the proof of
lemma 10.

Lemma 12 (Rows coherence). If C <: A, Φ ` u :: Type, Φ ` w :: kcn, and
Φ ` tail :: ktail [C], then Rows[A, Obj] w u (Rows[C, A] w u tail) = Rows[C, Obj] w u tail.

Proof. By induction on the derivation of C <: A. The base case (C = A) holds
trivially. Now, let CT (C) = class C / B { . . . } where B <: A. The rule for
Rows[C, A] defines a tuple {f = . . . , m = . . .} which we will call tail′. Specifically,
Rows[C, A] w u tail = Rows[B, A] w u tail′. Now, using tail′ in the inductive hypoth-
esis, we find that Rows[A, Obj] w u (Rows[B, A] w u tail′) = Rows[B, Obj] w u tail′.
According to the definition, Rows[B, Obj] w u tail′ = Rows[C, Obj] w u tail, where
tail′ is the same as above. Substituting equals for equals (twice) yields

Rows[A, Obj] w u (Rows[C, A] w u tail) = Rows[C, Obj] w u tail

C.3 Object transformations

Lemma 13 (Well-typed pack). If Φ ` tail :: ktail [C] and
Φ; ∆ ` e : SelfTy [C] (World u) u tail, then Φ; ∆ ` pack[C; u; tail; e] : (World u)·C.

Proof. By inspection of the definitions, using the term formation rules for fold
(10) and pack (1).
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 35

Lemma 14 (Well-typed upcast). If Φ; ∆ ` e : (World u)·C and C <: A, then
Φ; ∆ ` upcast[C; A; u; e] : (World u)·A.

Proof. By inspection of the definitions, using the term formation rules for open
(2) and unfold (11) and lemmas 8, 12, and 13. Unfolding e produces a term of type
ObjTy [C] (World u) u. Opening this introduces type variable tail :: ktail [C] and term
variable x : SelfTy [C] (World u) u tail; call this new environment Φ′; ∆′. The body
of the open contains a pack expression, but in order to use lemma 13, we must
establish the following:

(1) Φ′ ` Rows[C, A] (World u) u tail :: ktail [A], and
(2) Φ′; ∆′ ` x : SelfTy [A] (World u) u (Rows[C, A] (World u) u tail).

The first follows from lemma 8. The second reduces to

Φ′ ` SelfTy [A] (World u) u (Rows[C, A] (World u) u tail) =
SelfTy [C] (World u) u tail :: Type

By expanding the definition of SelfTy [·] and applying equivalence rules, it reduces
again to

Φ′ ` Rows[A, Obj] (World u) u (Rows[C, A] (World u) u tail) =
Rows[C, Obj] (World u) u tail :: ktail [Obj]

which follows from lemma 12. Finally, lemma 13 can be invoked to show that the
result of the upcast has type (World u)·A.

C.4 Type preservation for expressions

FJ contexts are translated to type environments as follows:

env[u; Γ, x : D] = env[u; Γ], x : (World u)·D
env[u; ◦] = ◦

Lemma 15 (Context translation). If Φ ` u :: Type and range(Γ) ⊆ cn,
then Φ ` env[u; Γ] type env.

Proof. By inspection.

Theorem 5 (Type preservation). If Φ ` u :: Type,
Φ; ∆ ` classes :{Classes (World u) u} and Γ ` e ∈ C, then
Φ; ∆,env[u; Γ] ` exp[Γ; u; classes; e] : (World u)·C.

Proof. By induction on the structure of e. We use the following abbreviations:
∆Γ for env[u; Γ]; ∆′Γ for ∆,∆Γ; and e for exp[Γ; u; classes; e].

Case var. e = x and, from (T-Var), C = Γ(x). Thus, ∆Γ(x) = (World u)·C and
Φ; ∆′Γ ` e : (World u)·C.

Case field. e = e0.fi and C = Ci, where Γ ` e0 ∈ C0 and fields(C0) =
C1 f1. . . Cn fn. By inductive hypothesis, Φ; ∆′Γ ` e0 : (World u)·C0. The code in
(field) unfolds and opens e0. Using the same argument as in the proof of lemma 14,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · Christopher League et al.

this introduces the type variable tail :: ktail [C0] and term variable x : SelfTy [C0] (World u) u tail;
call this new environment Φ′; ∆′′Γ. Unfolding x yields a term of type

{vtab : . . . ; (Rows[C0, Obj] (World u) u tail)·f}

Using lemma 7, (fi, Ci) ∈ fieldvec(C0). Using lemma 11, we find that the row
(Rows[C0, Obj] (World u) u tail)·f contains a binding fi : (World u)·Ci. Using record
selection, Φ; ∆′′Γ ` (unfoldx . . .).fi : (World u)·Ci. Exiting the scope of the open,
we conclude Φ; ∆′Γ ` e : (World u)·Ci.

Case invoke. e = e0.m(e1 . . . en), where Γ ` e0 ∈ C0, mtype(m, C0) = D1 . . . Dn->C,
Γ ` ei ∈ Ci, and Ci <: Di, for all i ∈ {1 . . . n}. We use the inductive hypothesis on e0,
and the same unfold-open-unfold argument as in the previous case. Selecting vtab
yields a term of type {(Rows[C0, Obj] (World u) u tail)·m (SelfTy [C0] (World u) u tail)}
Using lemma 6, (m, D1 . . . Dn->C) ∈ methvec(C0). Using lemma 10, the above record
contains a binding

m : (SelfTy [C0] (World u) u tail)→Ty [self;World u; D1 . . . Dn->C]
= m : (SelfTy [C0] (World u) u tail)→(World u)·D1→ . . .

(World u)·Dn→(World u)·C

Thus, selecting m and applying it to x yields a term of type

(World u)·D1→ . . . (World u)·Dn→(World u)·C

Now, for each i in 1 . . . n, we use the inductive hypothesis on ei, concluding that
Φ; ∆′Γ ` ei : (World u)·Ci. Using this and Ci <: Di, lemma 14 l tells us that Φ; ∆′Γ `
upcast[Ci; Di; u; ei] : (World u)·Di Finally, using the application formation rule n
times, Φ; ∆′Γ ` e : (World u)·C.

Case new. e = new C(e1 . . . en), where Γ ` ei ∈ Ci, fields(C) = D1 f1. . . Dn fn,
and Ci <: Di for all i in 1 . . . n. From the premise Φ; ∆ ` classes :{Classes (World u) u}
using the rules for selection (of C), application, and selection (of new), the new
component has type (World u)·D1→ . . . (World u)·Dn→(World u)·C. Just as in the
previous case, we use the inductive hypothesis and lemma 14 on each ei. Again,
using the application formation rule n times yields Φ; ∆′Γ ` e : (World u)·C.

Case upcast. follows from inductive hypothesis and lemma 14.

Case dncast. e = (C)e0 where Γ ` e0 ∈ D. We use the inductive hypothesis
on e0 and the usual unfold-open-unfold sequence. We select dyncast from the vtab
and self-apply; this produces a polymorphic function of type

∀α. (u→maybe α)→maybe α

Next we instantiate α with (World u)·C and apply to the class tag, which the
correct type: u→maybe (World u)·C. The result has type maybe (World u)·C, and
using the case formation rule, the first branch has type (World u)·C. The other
branch aborts evaluation, but is regarded as having the same type. So, finally,
Φ; ∆′Γ ` e : (World u)·C.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 37

C.5 Class components

Lemma 16 (Well-typed constructor). If Φ ` u :: Type and Φ; ∆ ` vtab :
Dict [C] (World u) u (SelfTy [C] (World u) u Empty [C]), then Φ; ∆ ` new[C; u; vtab] :
Ctor [C] (World u).

Proof. By inspection, using lemma 11.

Lemma 17 (Well-typed dictionary). If Φ ` u :: Type,
Φ; ∆ ` inj : (World u)·C→u, and Φ; ∆ ` classes :{Classes (World u) u}, then
Φ; ∆ ` dict[C; u; inj; classes] : ∀tail.Dict [C] (World u) u (SelfTy [C] (World u) u tail).

Proof. By inspection, using lemma 10.

Theorem 6 (Well-typed class declaration). Φ; ∆ ` cdec[C] : ClassF [C]

Proof. By inspection, using lemmas 16 and 17 for the non-trivial class compo-
nents.

ACKNOWLEDGMENTS

Dachuan Yu wrote the operational semantics for the target language (§B.3) and
supplied many details for the soundness proofs (§B.4). We also wish to thank the
anonymous referees for their many helpful comments.

REFERENCES

Abadi, M. and Cardelli, L. 1996. A Theory of Objects. Springer, New York.

Abadi, M., Cardelli, L., and Viswanathan, R. 1996. An interpretation of objects and object
types. In Proc. Symp. on Principles of Programming Languages. ACM, New York, 396–409.

Abadi, M. and Fiore, M. P. 1996. Syntactic considerations on recursive types. In Proc. 11th

Annual IEEE Symp. on Logic in Computer Science. 242–252.

Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P. 1998. Making the future safe for the
past: Adding genericity to the Java programming language. In Proc. Conf. on Object-Oriented
Programming Systems, Languages, and Applications. ACM, New York, 183–200.

Bruce, K. B. 1994. A paradigmatic object-oriented programming language: Design, static typing
and semantics. J. Functional Programming 4, 2, 127–206.

Bruce, K. B., Cardelli, L., and Pierce, B. C. 1999. Comparing object encodings. Information

and Computation 155, 1–2, 108–133.

Canning, P., Cook, W., Hill, W., Olthoff, W., and Mitchell, J. C. 1989. F-bounded poly-
morphism for object-oriented programming. In Proc. Int’l Conf. on Functional Programming

and Computer Architecture. ACM, 273–280.

Cardelli, L. and Leroy, X. 1990. Abstract types and the dot notation. In Proc. IFIP Working
Conf. on Programming Concepts and Methods. Israel, 466–491.

Crary, K. 1999. Simple, efficient object encoding using intersection types. Tech. Rep. CMU-CS-

99-100, Carnegie Mellon University, Pittsburgh. January.

Crary, K., Harper, R., and Puri, S. 1999. What is a recursive module? In Proc. Conf. on
Programming Language Design and Implementation. ACM, New York.

Eifrig, J., Smith, S., Trifonov, V., and Zwarico, A. 1995. An interpretation of typed OOP in

a language with state. Lisp and Symbolic Comput. 8, 4, 357–397.

Fisher, K. and Mitchell, J. C. 1998. On the relationship between classes, objects and data
abstraction. Theory and Practice of Object Systems 4, 1, 3–25.

Fisher, K. and Reppy, J. 1999. The design of a class mechanism for MOBY. In Proc. Conf. on

Programming Language Design and Implementation. ACM, New York.

Fisher, K., Reppy, J., and Riecke, J. G. 2000. A calculus for compiling and linking classes. In
Proc. European Symp. on Program. 135–149.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · Christopher League et al.

Girard, J. Y. 1972. Interpretation fonctionnelle et elimination des coupures dans l’arithmetique
d’ordre superieur. Ph.D. thesis, University of Paris VII.

Glew, N. 2000a. An efficient class and object encoding. In Proc. Conf. on Object-Oriented
Programming Systems, Languages, and Applications. ACM.

Glew, N. 2000b. Low-level type systems for modularity and object-oriented constructs. Ph.D.
thesis, Cornell University.

Goguen, H. 1995. Typed operational semantics. In Typed Lambda Calculi and Applications,

M. Dezani-Ciancaglini and G. Plotkin, Eds. LNCS, vol. 902. Springer-Verlag, Berlin, 186–200.

Harper, R. and Morrisett, G. 1995. Compiling polymorphism using intensional type analysis.

In Proc. Symp. on Principles of Programming Languages. ACM, New York, 130–141.

Harper, R. and Stone, C. 1998. A type-theoretic interpretation of Standard ML. In Proof,

Language, and Interaction: Essays in Honour of Robin Milner, G. Plotkin, C. Stirling, and
M. Tofte, Eds. MIT Press, Cambridge, Mass.

Igarashi, A. and Pierce, B. C. 2001. On inner classes. Information and Computation ?, ? (to
appear).

Igarashi, A., Pierce, B. C., and Wadler, P. 1999. Featherweight Java: A minimal core calculus
for Java and GJ. In Proc. Conf. on Object-Oriented Programming Systems, Languages, and

Applications. ACM, New York, 132–146.

Kamin, S. 1988. Inheritance in Smalltalk-80: A denotational definition. In Proc. Symp. on

Principles of Programming Languages. ACM, New York, 80–87.

Krall, A. and Grafl, R. 1997. CACAO—a 64-bit Java VM Just-In-Time compiler. In Proc.
ACM PPoPP’97 Workshop on Java for Science and Engineering Computation.

League, C., Shao, Z., and Trifonov, V. 1999. Representing Java classes in a typed intermediate
language. In Proc. Int’l Conf. Functional Programming. ACM, Paris, 183–196.

League, C., Trifonov, V., and Shao, Z. 2001a. Functional Java bytecode. In Proc. 5th World
Conf. on Systemics, Cybernetics, and Informatics. Workshop on Intermediate Representation

Engineering for the Java Virtual Machine.

League, C., Trifonov, V., and Shao, Z. 2001b. Type-preserving compilation of Featherweight

Java. In Proc. Int’l Workshop on Foundations of Object-Oriented Languages. London. Ex-
panded version to appear in ACM Trans. on Programming Languages and Systems.

Mitchell, J. C. and Plotkin, G. D. 1988. Abstract types have existential type. ACM Trans-
actions on Programming Languages and Systems 10, 3 (July), 470–502.

Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker, D.,

Weirich, S., and Zdancewic, S. 1999. TALx86: A realistic typed assembly language. In Proc.

Workshop on Compiler Support for Systems Software. ACM, New York, 25–35.

Morrisett, G., Tarditi, D., Cheng, P., Stone, C., Harper, R., and Lee, P. 1996. The TIL/ML

compiler: Performance and safety through types. In Proc. Workshop on Compiler Support for
Systems Software. ACM, New York.

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1999. From System F to typed assembly

language. ACM Trans. on Programming Languages and Systems 21, 3 (May), 528–569.

Necula, G. C. 1997. Proof-carrying code. In Proc. Symp. on Principles of Programming Lan-

guages. ACM, Paris, 106–119.

Necula, G. C. and Lee, P. 1996. Safe kernel extensions without run-time checking. In Proc.

USENIX Symposium on Operating Systems Design and Implementation. ACM, Seattle, 229–
243.

Peyton Jones, S. L., Hall, C., Hammond, K., Partain, W., and Wadler, P. 1992. The Glasgow
Haskell Compiler: A technical overview. In Proc. UK Joint Framework for Inform. Tech.

Pierce, B. C. and Turner, D. N. 1994. Simple type-theoretic foundations for object-oriented
programming. J. Functional Programming 4, 2 (April), 207–247.

Proebsting, T. A., Townsend, G., Bridges, P., Hartman, J. H., Newsham, T., and Watter-

son, S. A. 1997. Toba: Java for applications: A way ahead of time (WAT) compiler. In Proc.

Third Conf. on Object-Oriented Technologies and Systems (COOTS’97).

Rémy, D. 1993. Syntactic theories and the algebra of record terms. Tech. Rep. 1869, INRIA.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Type-Preserving Compilation of Featherweight Java · 39

Rémy, D. and Vouillon, J. 1997. Objective ML: A simple object-oriented extension of ML. In
Proc. Symp. on Principles of Programming Languages. ACM, New York, 40–53.

Reynolds, J. C. 1974. Towards a theory of type structure. In Proc. Colloque sur la Programma-

tion. LNCS, vol. 19. Springer-Verlag, Berlin, 408–425.

Shao, Z. 1997. An overview of the FLINT/ML compiler. In Proc. 1997 ACM SIGPLAN Work-
shop on Types in Compilation. Published as Boston College Computer Science Dept. Technical

Report BCCS-97-03.

Shao, Z. and Appel, A. W. 1995. A type-based compiler for Standard ML. In Proc. Conf. on
Programming Language Design and Implementation. ACM, La Jolla, 116–129.

Shao, Z., League, C., and Monnier, S. 1998. Implementing typed intermediate languages. In
Proc. Int’l Conf. Functional Programming. ACM, Baltimore, 313–323.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., and Lee, P. 1996. TIL: A
type-directed optimizing compiler for ML. In Proc. Conf. on Programming Language Design

and Implementation. ACM, New York.

Vanderwaart, J. C. 1999. Typed intermediate representations for compiling object-oriented
languages. Williams College Senior Honors Thesis.

Wright, A., Jagannathan, S., Ungureanu, C., and Hertzmann, A. 1998. Compiling Java to a
typed lambda-calculus: A preliminary report. In Proc. Int’l Workshop on Types in Compilation.
LNCS, vol. 1473. Springer, Berlin, 1–14.

Received May 2001

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

